SAFETY INFORMATION

Before working on any part of the outboard, read the SAFETY section at the end of this manual.

This manual is written for qualified, factory-trained technicians who are already familiar with the use of Evinrude®/Johnson® Special Tools. This manual is not a substitute for work experience. It is an organized guide for reference, repair, and maintenance of the outboard(s).

This manual uses the following signal words identifying important safety messages.

[DANGER]
Indicates an imminently hazardous situation which, if not avoided, WILL result in death or serious injury.

[WARNING]
Indicates a potentially hazardous situation which, if not avoided, CAN result in severe injury or death.

[CAUTION]
Indicates a potentially hazardous situation which, if not avoided, MAY result in minor or moderate personal injury or property damage. It also may be used to alert against unsafe practices.

IMPORTANT: Identifies information that will help prevent damage to machinery and appears next to information that controls correct assembly and operation of the product.

These safety alert signal words mean:

ATTENTION!
BECOME ALERT!
YOUR SAFETY IS INVOLVED!

Always follow common shop safety practices. If you have not had training related to common shop safety practices, you should do so to protect yourself, as well as the people around you.

It is understood that this manual may be translated into other languages. In the event of any discrepancy, the English version shall prevail.

To reduce the risk of personal injury, safety warnings are provided at appropriate times throughout the manual.

DO NOT make any repairs until you have read the instructions and checked the pictures relating to the repairs.

Be careful, and never rush or guess a service procedure. Human error is caused by many factors: carelessness, fatigue, overload, preoccupation, unfamiliarity with the product, and drugs and alcohol use, to name a few. Damage to a boat and outboard can be fixed in a short period of time, but injury or death has a lasting effect.

When replacement parts are required, use Evinrude/Johnson Genuine Parts or parts with equivalent characteristics, including type, strength and material. Using substandard parts could result in injury or product malfunction.

Torque wrench tightening specifications must be strictly followed. Replace any locking fastener (locknut or patch screw) if its locking feature becomes weak. Definite resistance to turning must be felt when reusing a locking fastener. If replacement is specified or required because the locking fastener has become weak, use only authorized Evinrude/Johnson Genuine Parts.

If you use procedures or service tools that are not recommended in this manual, YOU ALONE must decide if your actions might injure people or damage the outboard.
DANGER

Contact with a rotating propeller is likely to result in serious injury or death. Assure the engine and prop area is clear of people and objects before starting engine or operating boat. Do not allow anyone near a propeller, even when the engine is off. Blades can be sharp and the propeller can continue to turn even after the engine is off. Remove propeller before servicing and when running the outboard on a flushing device.

DO NOT run the engine indoors or without adequate ventilation or permit exhaust fumes to accumulate in confined areas. Engine exhaust contains carbon monoxide which, if inhaled, can cause serious brain damage or death.

WARNING

Wear safety glasses to avoid personal injury, and set compressed air to less than 25 psi (172 kPa).

The motor cover and flywheel cover are machinery guards. Use caution when conducting tests on running outboards. DO NOT wear jewelry or loose clothing. Keep hair, hands, and clothing away from rotating parts.

During service, the outboard may drop unexpectedly. Avoid personal injury; always support the outboard’s weight with a suitable hoist or the tilt support bracket during service.

To prevent accidental starting while servicing, disconnect the battery cables at the battery. Twist and remove all spark plug leads.

The electrical system presents a serious shock hazard. DO NOT handle primary or secondary ignition components while outboard is running or flywheel is turning.

Gasoline is extremely flammable and highly explosive under certain conditions. Use caution when working on any part of the fuel system.

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure.

Do not smoke, or allow open flames or sparks, or use electrical devices such as cellular phones in the vicinity of a fuel leak or while fueling.

Keep all electrical connections clean, tight, and insulated to prevent shorting or arcing and causing an explosion.

Always work in a well ventilated area.

Replace any locking fastener (locknut or patch screw) if its locking feature becomes weak. Definite resistance to tightening must be felt when reusing a locking fastener. If replacement is indicated, use only authorized replacement or equivalent.
Table of Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>1 SERVICE SPECIFICATIONS AND SPECIAL TOOLS</td>
<td>17</td>
</tr>
<tr>
<td>2 INSTALLATION AND PREDELIVERY</td>
<td>31</td>
</tr>
<tr>
<td>3 MAINTENANCE</td>
<td>71</td>
</tr>
<tr>
<td>4 ENGINE MANAGEMENT MODULE (EMM)</td>
<td>85</td>
</tr>
<tr>
<td>5 SYSTEM ANALYSIS</td>
<td>103</td>
</tr>
<tr>
<td>6 ELECTRICAL AND IGNITION</td>
<td>123</td>
</tr>
<tr>
<td>7 FUEL SYSTEM</td>
<td>155</td>
</tr>
<tr>
<td>8 OILING SYSTEM</td>
<td>177</td>
</tr>
<tr>
<td>9 COOLING SYSTEM</td>
<td>191</td>
</tr>
<tr>
<td>10 POWERHEAD</td>
<td>201</td>
</tr>
<tr>
<td>11 MIDSECTION</td>
<td>239</td>
</tr>
<tr>
<td>12 GEARCASE</td>
<td>255</td>
</tr>
<tr>
<td>13 TRIM AND TILT</td>
<td>285</td>
</tr>
<tr>
<td>SAFETY</td>
<td>S–1</td>
</tr>
<tr>
<td>INDEX</td>
<td>Index–1</td>
</tr>
<tr>
<td>TROUBLE CHECK CHART</td>
<td>T–1</td>
</tr>
<tr>
<td>DIAGRAMS</td>
<td></td>
</tr>
<tr>
<td>EMM SERVICE CODE CHART</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

CONTENTS

MODELS COVERED IN THIS MANUAL ... 6

IDENTIFYING MODEL AND SERIAL NUMBERS ... 6

MODEL DESIGNATION ... 7

TYPICAL PAGE – A ... 8

TYPICAL PAGE – B ... 9

TYPICAL PAGE – C ... 10

TYPICAL PAGE – D ... 11

ABBREVIATIONS USED IN THIS MANUAL ... 12

UNITS OF MEASUREMENT ... 12

LIST OF ABBREVIATIONS ... 12

ENGINE EMISSIONS INFORMATION ... 13

MANUFACTURER’S RESPONSIBILITY .. 13

DEALER’S RESPONSIBILITY .. 13

OWNER’S RESPONSIBILITY ... 13

EPA EMISSION REGULATIONS ... 13

PRODUCT REFERENCE AND ILLUSTRATIONS .. 14

SYMBOLS .. 14

ELECTRICAL .. 14

VALUES ... 15

NOTES ... 16
MODELS COVERED IN THIS MANUAL

This manual covers service information on all 3-cylinder, 79 cubic inch, Evinrude E-TEC™ models.

Use this manual together with the proper Parts Catalog for part numbers and for exploded views of the outboard, which are a valuable aid to disassembly and reassembly. This manual presents the U.S. values and dimensions first and the metric values and dimensions second, inside parentheses ().

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Start</th>
<th>Shaft</th>
<th>Steer</th>
</tr>
</thead>
<tbody>
<tr>
<td>E75DPLSUM</td>
<td>Electric</td>
<td>20”</td>
<td>Remote</td>
</tr>
<tr>
<td>E90DPLSUM</td>
<td>Electric</td>
<td>20”</td>
<td>Remote</td>
</tr>
<tr>
<td>E90DPXSUM</td>
<td>Electric</td>
<td>25”</td>
<td>Remote</td>
</tr>
<tr>
<td>E90DSLSUM</td>
<td>Electric</td>
<td>20”</td>
<td>Remote</td>
</tr>
</tbody>
</table>

Identifying Model and Serial Numbers

Outboard model and serial numbers are located on the swivel bracket and on the powerhead.

1. Model and serial number

1. Serial number
MODEL DESIGNATION

PREFIX

STYLE:
J = Johnson
E = Evinrude

HORSEPOWER

LENGTH:
= 15” Std.
L = 20” Long
Y = 22.5” Special
X = 25” X-long
Z = 30” XX-long

MODEL RUN or SUFFIX

DESIGN FEATURES:
AP = Advanced Propulsion
B = Blue Paint
C = Counter Rotation
D = Evinrude E-TEC™
E = Electric Start w/Remote Steering
F = Direct-Injection
G = Graphite Paint
H = High Output
J = Jet Drive
M = Military
P = Power Trim and Tilt
R = Rope Start w/Tiller Steering
S = Saltwater Edition
T = Tiller Steering
TE = Tiller Electric
V = White Paint
W = Commercial Model

MODEL YR:
I = 1
N = 2
T = 3
R = 4
O = 5
D = 6
U = 7
C = 8
E = 9
S = 0
Ex: SU = 2007
INTRODUCTION

TYPICAL PAGE – A

TYPICAL PAGE – A

GEARCASE
SERVICE CHART

60° V4 20 IN. MODELS

Subsection title indicates beginning of the subsection.

Bold letter indicates liquid product to be applied to a surface.

Pay attention to torque specifications. Some units appear as in. lbs. Use appropriate torque.

Exploded view of Service Chart assists in identifying parts and positions.

Indicates list corresponding to applicable letter in exploded view of the Service Chart.

Italic subheading above Service Chart indicates pertaining models.

Tightening torque for a fastener.
Cable, Hose, and Wire Routing
Route all hoses, control cables, and wiring through a protective sleeve or conduit into the boat and through the grommet.

Refer to the following diagram to ensure proper positioning of rigging components in grommet.

If a water pressure gauge is to be used, install the water pressure hose fitting in the cylinder block. Use Pipe Sealant with Teflon (P/N 910048) on the threads of the hose fitting. Refer to installation instructions supplied with gauge.

Route the water pressure hose through cover grommet with oil tank sending unit harness. Route hose along battery cables toward the back of the powerhead. Use tie straps to fasten in place.

If temperature gauge is to be used, route sending unit wire through grommet with hose for water pressure gauge. Follow the path of battery cables. Provide adequate length to reach cylinder head. Refer to installation instructions supplied with gauge.
POWERHEAD INSTALLATION

IMPORTANT: The motor mount, washer, and screw are serviced as an assembly. Do not disassemble.

Denotes necessary step or information to prevent damage or control correct procedure.

Installation

Place mount assemblies in position, with flats facing away from each other.

Apply Extreme Pressure Grease to all sides of retainer and install between mounts.

Apply Nut Lock to retainer screw, install the screw, and torque to 15 to 20 ft. lbs. (20 to 27 N·m).

Coat the driveshaft splines with Moly Lube. Do not apply lubricant to end of driveshaft.
Two pulse hoses connect the pump to pulse fittings on the front of the cylinder/crankcase.

- **V4 Models** – cylinders 1 and 3
- **V6 Models** – cylinders 1 and 4

Oil Injector-Manifold

- 40 V oil injector
- Oil distribution manifold
- Oil pressure switch
- Pressure regulator (oil return hose)
- Oil distribution hoses
- Oil to fuel check valve

Oil Pressure Switch

The oil pressure switch is located in the oil injector-manifold and reacts to changes in oil manifold pressure. The EMM supplies and monitors electrical current to the switch.

- 53 psi (365 kPa) (nominal) to close
- 43 psi (296 kPa) (nominal) to reopen

Refer to **Oil Pressure Switch Test** on p. 224.

Service Code 38

A faulty electrical circuit or an inoperative pressure switch activates service code 38 (no oil sensor feedback or lack of oil pressure) and the EMM:

- Activates the System Check "NO OIL" light
- Stores a service code
- Initiates S.L.O.W.

Service Code 39

If no oil pressure is detected during startup, the EMM initiates an oil injector “recovery mode” to pressurize the system. If inadequate oil pressure is still detected after the recovery mode is completed, the EMM:

- Activates the System Check "NO OIL" light
- Stores a service code
- Initiates S.L.O.W.
Abbreviations Used in This Manual

Units of Measurement

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amperes</td>
<td>A</td>
<td>Ampere hour</td>
</tr>
<tr>
<td>fluid ounce</td>
<td>fl. oz.</td>
<td></td>
</tr>
<tr>
<td>foot pounds</td>
<td>ft. lbs.</td>
<td></td>
</tr>
<tr>
<td>horsepower</td>
<td>HP</td>
<td></td>
</tr>
<tr>
<td>inch</td>
<td>in.</td>
<td></td>
</tr>
<tr>
<td>inches of mercury</td>
<td>in. Hg</td>
<td></td>
</tr>
<tr>
<td>inch pounds</td>
<td>in. lbs.</td>
<td></td>
</tr>
<tr>
<td>kilopascals</td>
<td>kPa</td>
<td></td>
</tr>
<tr>
<td>milliliter</td>
<td>ml</td>
<td></td>
</tr>
<tr>
<td>millimeter</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Newton meter</td>
<td>N·m</td>
<td></td>
</tr>
<tr>
<td>part number</td>
<td>P/N</td>
<td></td>
</tr>
<tr>
<td>pounds per square inch</td>
<td>psi</td>
<td></td>
</tr>
<tr>
<td>revolutions per minute</td>
<td>RPM</td>
<td></td>
</tr>
<tr>
<td>degrees Celsius</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>degrees Fahrenheit</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td>milliseconds</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>microseconds</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Ohms</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Volts</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Volts Alternating Current</td>
<td>VAC</td>
<td></td>
</tr>
<tr>
<td>Volts Direct Current</td>
<td>VDC</td>
<td></td>
</tr>
</tbody>
</table>

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABYC</td>
<td>American Boat & Yacht Council</td>
</tr>
<tr>
<td>ATDC</td>
<td>after top dead center</td>
</tr>
<tr>
<td>AT</td>
<td>air temperature sensor</td>
</tr>
<tr>
<td>BPS</td>
<td>barometric pressure sensor</td>
</tr>
<tr>
<td>BTDC</td>
<td>before top dead center</td>
</tr>
<tr>
<td>CCA</td>
<td>cold cranking amps</td>
</tr>
<tr>
<td>CPS</td>
<td>crankshaft position sensor</td>
</tr>
<tr>
<td>DI</td>
<td>Direct-Injection</td>
</tr>
<tr>
<td>ECU</td>
<td>electronic control unit</td>
</tr>
<tr>
<td>EMM</td>
<td>engine management module</td>
</tr>
<tr>
<td>ICOMIA</td>
<td>International Council of Marine Industry Associations</td>
</tr>
<tr>
<td>MCA</td>
<td>marine cranking amps</td>
</tr>
<tr>
<td>MWS</td>
<td>modular wiring system</td>
</tr>
<tr>
<td>NMEA</td>
<td>National Marine Electronics Assoc.</td>
</tr>
<tr>
<td>NTC</td>
<td>negative temperature coefficient</td>
</tr>
<tr>
<td>PDP</td>
<td>power distribution panel</td>
</tr>
<tr>
<td>PTC</td>
<td>positive temperature coefficient</td>
</tr>
<tr>
<td>ROM</td>
<td>read only memory</td>
</tr>
<tr>
<td>S.A.F.E.™</td>
<td>speed adjusting failsafe electronics</td>
</tr>
<tr>
<td>SAC</td>
<td>start assist circuit</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>S.L.O.W.™</td>
<td>speed limiting operational warning</td>
</tr>
<tr>
<td>SYNC</td>
<td>synchronization</td>
</tr>
<tr>
<td>TDC</td>
<td>top dead center</td>
</tr>
<tr>
<td>TPS</td>
<td>throttle position sensor</td>
</tr>
<tr>
<td>WOT</td>
<td>wide open throttle</td>
</tr>
<tr>
<td>WTS</td>
<td>water temperature sensor</td>
</tr>
</tbody>
</table>
ENGINE EMISSIONS INFORMATION

Maintenance, replacement, or repair of the emission control devices and systems may be performed by any marine SI (spark ignition) engine repair establishment or individual.

Manufacturer’s Responsibility

Beginning with 1999 model year outboards, manufacturers of marine outboards must determine the exhaust emission levels for each outboard horsepower family and certify these outboards with the United States of America Environmental Protection Agency (EPA). An emissions control information label, showing emission levels and outboard specifications, must be placed on each outboard at the time of manufacture.

Dealer’s Responsibility

When performing service on all 1999 and more recent Evinrude/Johnson outboards that carry an emissions control information label, adjustments must be kept within published factory specifications.

Replacement or repair of any emission related component must be executed in a manner that maintains emission levels within the prescribed certification standards.

Dealers are not to modify the outboard in any manner that would alter the horsepower or allow emission levels to exceed their predetermined factory specifications.

Exceptions include manufacturer’s prescribed changes, such as altitude adjustments, for example.

Owner’s Responsibility

The owner/operator is required to have outboard maintenance performed to maintain emission levels within prescribed certification standards.

The owner/operator is not to, and should not allow anyone to, modify the outboard in any manner that would alter the horsepower or allow emissions levels to exceed their predetermined factory specifications.

Tampering with the fuel system to change horsepower or modify emission levels beyond factory settings or specifications will void the product warranty.

EPA Emission Regulations

All new 1999 and more recent Evinrude/Johnson outboards are certified to the EPA as conforming to the requirements of the regulations for the control of air pollution from new watercraft marine spark ignition outboards. This certification is contingent on certain adjustments being set to factory standards. For this reason, the factory procedure for servicing the product must be strictly followed and, whenever practical, returned to the original intent of the design. The responsibilities listed above are general and in no way a complete listing of the rules and regulations pertaining to the EPA requirements on exhaust emissions for marine products. For more detailed information on this subject, you may contact the following locations:

VIA U.S. POSTAL SERVICE:
Office of Mobile Sources
Engine Programs and Compliance Division
Engine Compliance Programs Group (6403J)
401 M St. NW
Washington, DC 20460

VIA EXPRESS or COURIER MAIL:
Office of Mobile Sources
Engine Programs and Compliance Division
Engine Compliance Programs Group (6403J)
501 3rd St. NW
Washington, DC 20001

EPA INTERNET WEB SITE:
www.epa.gov

BRP US Inc. reserves the right to make changes at any time, without notice, in specifications and models and also to discontinue models. The right
is also reserved to change any specifications or parts, at any time, without incurring any obligation to equip same on models manufactured prior to date of such change. Specifications used are based on the latest product information available at the time of publication.

The continuing accuracy of this manual cannot be guaranteed.

All photographs and illustrations used in this manual may not depict actual models or equipment, but are intended as representative views for reference only.

Certain features or systems discussed in this manual might not be found on all models in all marketing areas.

All service technicians must be familiar with nautical orientation. This manual often identifies parts and procedures using these terms.

SYMBOLS

Throughout this service manual, symbols are used to interpret electrical troubleshooting results or to assign values in drawings.

Electrical

When “∞” shows on the meter face, no continuity, or very high resistance, is indicated. The symbol is referred to as infinity.

![Symbol ∞](image)

When “V” follows a value on the meter face, the procedure is measuring voltage.

![Symbol V](image)
INTRODUCTION
SYMBOLS

When “Ω” follows a value on the meter face, the procedure is measuring resistance. Ω is the symbol for ohm, the unit of measurement for resistance.

When “≥” precedes a value on the meter face, the reading must be greater than, or equal to, the value shown.

Values
When “≤” precedes a value on the meter face, the reading must be less than, or equal to, the value shown.
NOTES

Technician’s Notes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Related Documents

<table>
<thead>
<tr>
<th>Category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulletins</td>
<td></td>
</tr>
<tr>
<td>Instruction Sheets</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
SERVICE SPECIFICATIONS AND SPECIAL TOOLS

TABLE OF CONTENTS

TECHNICAL DATA ... 18
STANDARD TORQUE SPECIFICATIONS ... 20
SPECIAL TOOLS ... 21
 ELECTRICAL / IGNITION .. 21
 FUEL SYSTEM ... 22
 GEARCASE .. 22
 POWERHEAD ... 24
 UNIVERSAL ... 25
SHOP AIDS .. 27
TECHNICAL DATA

75 – 90 HP E-TEC Models

<table>
<thead>
<tr>
<th>ENGINE</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Throttle Operating Range RPM</td>
<td>4500 to 5500 RPM</td>
</tr>
<tr>
<td>Power</td>
<td>75 HP (56 kw) @ 5000 RPM 90 HP (67.1 kw) @ 5000 RPM</td>
</tr>
<tr>
<td>Idle RPM in Gear</td>
<td>700 ± 50 EMM Controlled</td>
</tr>
<tr>
<td>Idle RPM in Neutral</td>
<td>600 ± 50 EMM Controlled</td>
</tr>
<tr>
<td>Test Propeller</td>
<td>(L) Models: P/N 386246 (X) Models: P/N 387388</td>
</tr>
<tr>
<td>Weight (may vary depending on model)</td>
<td>(L) Models: 320 lbs. (145 kg) (X) Models: 335 lbs. (152 kg)</td>
</tr>
<tr>
<td>Lubrication</td>
<td>Evinrude/Johnson XD100, XD50, XD30; or NMMA TC-W3 certified</td>
</tr>
<tr>
<td>Engine Type</td>
<td>In-line, 3 Cylinder, Two-Cycle</td>
</tr>
<tr>
<td>Displacement</td>
<td>79.1 cu. in. (1296 cc)</td>
</tr>
<tr>
<td>Bore</td>
<td>3.601 in (91.47 mm)</td>
</tr>
<tr>
<td>Stroke</td>
<td>2.588 in. (65.74 mm)</td>
</tr>
<tr>
<td>Standard Bore</td>
<td>3.6005 to 3.6015 in. (91.45 to 91.48 mm) To bore oversize, add piston oversize dimension to standard bore</td>
</tr>
<tr>
<td>Top Crankshaft Journal</td>
<td>2.1870 to 2.1875 in. (55.55 to 55.56 mm)</td>
</tr>
<tr>
<td>Center Crankshaft Journals</td>
<td>2.1870 to 2.1875 in. (55.55 to 55.56 mm)</td>
</tr>
<tr>
<td>Bottom Crankshaft Journal</td>
<td>1.5747 to 1.5752 in. (40.0 to 40.01 mm)</td>
</tr>
<tr>
<td>Rod Crankpin</td>
<td>1.3757 to 1.3762 in. (34.94 to 34.96 mm)</td>
</tr>
<tr>
<td>Piston Ring End Gap, Both</td>
<td>0.011 to 0.023 in. (0.28 to 0.58 mm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUEL</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel/Oil Control</td>
<td>EMM Controlled</td>
</tr>
<tr>
<td>Starting Enrichment</td>
<td>EMM Controlled</td>
</tr>
<tr>
<td>Minimum (High) Fuel Pressure</td>
<td>24 to 28 psi (165 to 193 kPa)</td>
</tr>
<tr>
<td>Minimum Fuel Lift Pump Pressure</td>
<td>3 psi (21 kPa)</td>
</tr>
<tr>
<td>Maximum Fuel Inlet Vacuum</td>
<td>4 in. Hg.</td>
</tr>
<tr>
<td>Minimum Octane</td>
<td>87 AKI (R+M)/2 or 90 RON</td>
</tr>
<tr>
<td>Additives</td>
<td>2+4 ® Fuel Conditioner, Fuel System Cleaner Use of other additives may result in engine damage.</td>
</tr>
</tbody>
</table>

See Fuel Requirements on p. 57 for additional information.
<table>
<thead>
<tr>
<th>75 – 90 HP E-TEC Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICAL</td>
</tr>
<tr>
<td>Minimum Battery Requirements</td>
</tr>
<tr>
<td>Alternator</td>
</tr>
<tr>
<td>Tachometer Setting</td>
</tr>
<tr>
<td>Engine Fuse</td>
</tr>
<tr>
<td>COOLING</td>
</tr>
<tr>
<td>Maximum Temperature</td>
</tr>
<tr>
<td>Thermostat</td>
</tr>
<tr>
<td>Water pressure</td>
</tr>
<tr>
<td>IGNITION</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Firing Order</td>
</tr>
<tr>
<td>Ignition Timing</td>
</tr>
<tr>
<td>RPM Limit in Gear</td>
</tr>
<tr>
<td>RPM Limit in Neutral</td>
</tr>
<tr>
<td>Crankshaft Position Sensor Air Gap</td>
</tr>
<tr>
<td>Spark Plug</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GEARCASE</td>
</tr>
<tr>
<td>Gear Ratio</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lubricant</td>
</tr>
<tr>
<td>Capacity</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Shift Rod Height</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Shift Cable Stroke</td>
</tr>
<tr>
<td>POWER TRIM/TILT</td>
</tr>
<tr>
<td>Lubrication</td>
</tr>
<tr>
<td>Fluid Capacity</td>
</tr>
<tr>
<td>Trim Range</td>
</tr>
<tr>
<td>Tilt Range</td>
</tr>
</tbody>
</table>
STANDARD TORQUE SPECIFICATIONS

Standard Torque Chart

<table>
<thead>
<tr>
<th>Size</th>
<th>In. Lbs.</th>
<th>Ft. Lbs.</th>
<th>N·m</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 6</td>
<td>7–10</td>
<td>0.58–0.83</td>
<td>0.8–1.1</td>
</tr>
<tr>
<td>No. 8</td>
<td>15–22</td>
<td>1.25–1.83</td>
<td>1.7–2.5</td>
</tr>
<tr>
<td>No. 10</td>
<td>24–36</td>
<td>2–3</td>
<td>2.7–4.0</td>
</tr>
<tr>
<td>No. 12</td>
<td>36–48</td>
<td>3–4</td>
<td>4.0–5.4</td>
</tr>
<tr>
<td>1/4 in.</td>
<td>60–84</td>
<td>5–7</td>
<td>6.7–9.4</td>
</tr>
<tr>
<td>5/16 in.</td>
<td>120–144</td>
<td>10–12</td>
<td>13.5–16.2</td>
</tr>
<tr>
<td>3/8 in.</td>
<td>216–240</td>
<td>18–20</td>
<td>24.4–27.1</td>
</tr>
<tr>
<td>7/16 in.</td>
<td>336–384</td>
<td>28–32</td>
<td>37.9–43.4</td>
</tr>
</tbody>
</table>

IMPORTANT: These values apply only when a specific torque for a specific fastener is not listed in the appropriate section. When tightening two or more screws on the same part, DO NOT tighten screws completely, one at a time.

WARNING

Torque wrench tightening specifications must be strictly adhered to. Replace any locking fastener (locknut or patch screw) if its locking feature becomes weak. Definite resistance to turning must be felt when reusing a locking fastener.

If replacement is specified or required because the locking fastener has become weak, use only authorized *Evinrude/Johnson Genuine Parts.*
SPECIAL TOOLS

Electrical / Ignition

Digital multimeter
DRC7265
Ohms resolution 0.01
Purchase through local supplier

Peak reading voltmeter
49799
P/N 507972

Analog multimeter P/N 501873
49793

Diagnostic Software for Windows based PC P/N 763724

005444

Bootstrap tool P/N 586551
002276

Connector Tool P/N 342667
42004

Interface cable P/N 437955
45583

Crimping pliers P/N 322696
30387

AMP? connector tools

Primary Lock Tool P/N 777077
Secondary Lock Tool P/N 777078
Release Tool P/N 351413
Lock Installer P/N 777079

Stator Test Adapter P/N 500579
002273

Tachometer/timing light
49789
P/N 507980
Fuel System

- Fuel pressure gauge (15 PSI)
 P/N 5006397
 90° fitting P/N 353322
 004560

- Fuel pressure gauge (60 PSI)
 P/N 5007100
 90° fitting P/N 353322
 005135

- Fuel pressure gauge (100 PSI)
 P/N 5000902
 002275

- Nipple Kit P/N 5005844
 002465

Gearcase

- Gearcase pressure tester
 P/N 507977 (Stevens P/N S-34)
 Gearcase vacuum tester
 P/N 507982 (Stevens P/N V-34)
 49794

- Prop shaft housing seal installer
 P/N 336311
 P/N 326551
 32973
1. Pinion nut holder P/N 334455
2. Wrench retainer P/N 341438

Seal installer P/N 330268

Pinion bearing installer P/N 350958

1. Backing plate P/N 325867
2. Driveshaft seal protector P/N 318674

Pinion bearing spacer P/N 341437

1. Collar P/N 341440
2. Gauge bar P/N 328367

Driveshaft socket P/N 311875

Pinion nut starting tool P/N 342216

Driveshaft puller P/N 390706

Lower driveshaft puller P/N 342681

Prop shaft front bearing installer P/N 339750
Powerhead

Crankshaft bearing and sleeve installer
1. P/N 338647
2. P/N 338649

Ring compressor
- Standard: P/N 336314
- Oversize: P/N 336313

Cylinder bore gauge P/N 771310

Lifting ring assembly P/N 396748

Piston stop tool P/N 342679

Cylinder bore gauge P/N 771310

Lifting ring assembly P/N 396748

Torquing socket P/N 331638
SERVICE SPECIFICATIONS AND SPECIAL TOOLS
SPECIAL TOOLS

1. Wrist pin retaining ring driver
 P/N 318599
 DR1641

2. Wrist pin cone P/N 318600

Flywheel holder P/N 771311
42938

Large puller jaws P/N 432129
23148

Bearing puller jaws P/N 432130
23149

Fresh water flusher P/N 500542
50110

Small puller jaws P/N 432131
23150

Puller Bridge P/N 432127
23146

Universal
<table>
<thead>
<tr>
<th>Tool Description</th>
<th>P/N</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slide hammer</td>
<td>391008</td>
<td>CO1577</td>
</tr>
<tr>
<td>Slide hammer adapter</td>
<td>340624</td>
<td>39435</td>
</tr>
<tr>
<td>Tilt tube nut wrench</td>
<td>342680</td>
<td>46879</td>
</tr>
<tr>
<td>Slide hammer</td>
<td>432128</td>
<td>15345</td>
</tr>
<tr>
<td>Syringe</td>
<td>346936</td>
<td>50243</td>
</tr>
<tr>
<td>Tilt tube service kit</td>
<td>434523</td>
<td>33249</td>
</tr>
<tr>
<td>Slide hammer adapter</td>
<td>390898</td>
<td>15356</td>
</tr>
<tr>
<td>Temperature Gun</td>
<td>772018</td>
<td>45240</td>
</tr>
<tr>
<td>Universal Puller Set</td>
<td>378103</td>
<td>32885</td>
</tr>
</tbody>
</table>
SHOP AIDS

<table>
<thead>
<tr>
<th>Description</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning Solvent</td>
<td>771087</td>
</tr>
<tr>
<td>Engine Tuner</td>
<td>777185</td>
</tr>
<tr>
<td>Anti-Corrosion Spray</td>
<td>777193</td>
</tr>
<tr>
<td>“6 in 1” Multi-Purpose Lubricant</td>
<td>777192</td>
</tr>
<tr>
<td>D.P.L. Spray</td>
<td>777183</td>
</tr>
<tr>
<td>Silicone spray</td>
<td>775630</td>
</tr>
<tr>
<td>Oil - XD100™</td>
<td>777118</td>
</tr>
<tr>
<td>Oil - XD50™</td>
<td>777225</td>
</tr>
<tr>
<td>Oil - XD30™</td>
<td>777219</td>
</tr>
<tr>
<td>Ultra 4-Stroke Outboard Oil</td>
<td>775594</td>
</tr>
<tr>
<td>4-Stroke Outboard Oil</td>
<td>775597</td>
</tr>
<tr>
<td>HPF XR™ Gear Lube</td>
<td>778747</td>
</tr>
</tbody>
</table>
SERVICE SPECIFICATIONS AND SPECIAL TOOLS
SHOP AIDS

- HI-VIS™ Gearcase Lube P/N 775605
- Triple-Guard® Grease P/N 508298
- Extreme Pressure Grease™ P/N 508303
- Moly Lube P/N 175356
- Needle Bearing Grease, P/N 378642
- Starter Bendix Lube P/N 337016
- Storage Fogging Oil P/N 777186
- Power Trim/Tilt and Power Steering Fluid P/N 775612
- Biodegradeable TNT Fluid P/N 763439
- Lubriplate™ 777 P/N 317619
- Black Neoprene Dip P/N 909570
- Electrical Grease P/N 504824
2 + 4™ Fuel conditioner P/N 775613

Fuel System Cleaner P/N 777184

Carbon Guard™ P/N 775629

Gel-Seal and Gasket Remover P/N 771050

Gel-Seal II P/N 327361

Gasket Sealing Compound P/N 317201

Permatex® No. 2, P/N 910032

ThreeBond™ 1104, P/N 351052

Pipe Sealant with Teflon P/N 910048

ThreeBond 1207B, P/N 351053

GE® RTV Silicone Sealant P/N 263753

Gasolila™ Thread Sealant P/N 200763

1. Screw Lock P/N 500417
 (Loctite® Purple 222 equivalent)
2. Nut Lock P/N 500421
 (Loctite Blue 242 Equivalent)
3. Ultra Lock P/N 500423
 (Loctite Red 271 Equivalent)
SERVICE SPECIFICATIONS AND SPECIAL TOOLS

SHOP AIDS

Locquic Primer P/N 772032
Adhesive 847 P/N 776964
Instant Bonding Adhesive P/N 509955

GM® Gear Mark Compound P/N 772666
Thermal Joint Compound P/N 322170
INSTALLATION AND PREDELIVERY

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOAT RIGGING</td>
<td>32</td>
</tr>
<tr>
<td>REMOTE CONTROLS</td>
<td>32</td>
</tr>
<tr>
<td>BATTERY INSTALLATION</td>
<td>34</td>
</tr>
<tr>
<td>BATTERY SWITCHES AND MULTIPLE BATTERIES</td>
<td>35</td>
</tr>
<tr>
<td>BATTERY AND SWITCH WIRING DIAGRAMS</td>
<td>37</td>
</tr>
<tr>
<td>FUEL SYSTEM REQUIREMENTS</td>
<td>39</td>
</tr>
<tr>
<td>CABLE AND HOSE INSTALLATION</td>
<td>41</td>
</tr>
<tr>
<td>OUTBOARD INSTALLATION</td>
<td>46</td>
</tr>
<tr>
<td>HULL PREPARATION</td>
<td>46</td>
</tr>
<tr>
<td>TRANSMISSION MEASURING AND DRILLING</td>
<td>47</td>
</tr>
<tr>
<td>LIFTING THE OUTBOARD</td>
<td>51</td>
</tr>
<tr>
<td>STEERING SYSTEMS</td>
<td>51</td>
</tr>
<tr>
<td>OUTBOARD MOUNTING</td>
<td>53</td>
</tr>
<tr>
<td>OUTBOARD RIGGING</td>
<td>54</td>
</tr>
<tr>
<td>CABLE, HOSE, AND WIRE ROUTING</td>
<td>54</td>
</tr>
<tr>
<td>CONTROL CABLE ADJUSTMENTS</td>
<td>54</td>
</tr>
<tr>
<td>WIRING HARNESS CONNECTIONS</td>
<td>56</td>
</tr>
<tr>
<td>WATER PRESSURE CONNECTION</td>
<td>56</td>
</tr>
<tr>
<td>FUEL AND OIL PRIMING</td>
<td>57</td>
</tr>
<tr>
<td>FUEL REQUIREMENTS</td>
<td>57</td>
</tr>
<tr>
<td>FUEL SYSTEM PRIMING</td>
<td>58</td>
</tr>
<tr>
<td>OIL REQUIREMENTS</td>
<td>59</td>
</tr>
<tr>
<td>OIL INJECTION RATE</td>
<td>59</td>
</tr>
<tr>
<td>SYSTEMCHECK LOW OIL WARNING TEST</td>
<td>59</td>
</tr>
<tr>
<td>OIL SUPPLY PRIMING</td>
<td>60</td>
</tr>
<tr>
<td>BREAK-IN OILING</td>
<td>60</td>
</tr>
<tr>
<td>BEFORE START-UP</td>
<td>61</td>
</tr>
<tr>
<td>GEARCASE LUBRICANT</td>
<td>61</td>
</tr>
<tr>
<td>OIL LEVEL</td>
<td>61</td>
</tr>
<tr>
<td>TRIM AND TILT FLUID</td>
<td>61</td>
</tr>
<tr>
<td>RUNNING CHECKS</td>
<td>62</td>
</tr>
<tr>
<td>SYSTEMCHECK OPERATION</td>
<td>62</td>
</tr>
<tr>
<td>EMERGENCY STOP / KEY SWITCH</td>
<td>62</td>
</tr>
<tr>
<td>START-IN-GEAR PREVENTION</td>
<td>62</td>
</tr>
<tr>
<td>BREAK-IN</td>
<td>63</td>
</tr>
<tr>
<td>PROPELLERS</td>
<td>64</td>
</tr>
<tr>
<td>PROPELLER SELECTION</td>
<td>64</td>
</tr>
<tr>
<td>PROPELLER HARDWARE INSTALLATION</td>
<td>65</td>
</tr>
<tr>
<td>FINAL ADJUSTMENTS</td>
<td>66</td>
</tr>
<tr>
<td>TILT LIMIT SWITCH ADJUSTMENT</td>
<td>66</td>
</tr>
<tr>
<td>TRIM SENDING UNIT ADJUSTMENT</td>
<td>67</td>
</tr>
<tr>
<td>TRIM TAB ADJUSTMENT</td>
<td>68</td>
</tr>
<tr>
<td>DUAL-OUTBOARD ALIGNMENT</td>
<td>69</td>
</tr>
<tr>
<td>NOTES</td>
<td>70</td>
</tr>
</tbody>
</table>

31
Remote control styles and applications are described in the Evinrude/Johnson Genuine Parts and Accessories Catalog. Plan the installation of all remote controls carefully. Read the outboard's Operator's Guide and the remote control's installation instructions prior to installation.

The remote control and wiring harness used must have the following features:
• Start-in-gear prevention
• Emergency stop / key switch
• Shift stroke must measure 1.125 to 1.330 in. (28.6 to 33.8 mm) between NEUTRAL and FORWARD
• Throttle stroke must PUSH for open
• All wiring must be compatible with Modular Wiring System (MWS) components

Additional remote control information:
• Power trim/tilt switch(s) can be integral to the remote control for outboards with power tilt and trim.
• Side-mount controls require a neutral lock feature.
• Single-outboard binnacle remote controls are offered with or without an integrated key switch.
• Dual-outboard binnacle remote controls require separate key switches and a single emergency stop switch.

WARNING
The remote control used must have start-in-gear prevention. This feature can prevent injuries resulting from unexpected boat movement when the outboard starts.

WARNING
Always install and recommend use of an emergency stop/key switch. Doing so will reduce the risk of personal injury or death should the operator fall away from the controls or out of the boat.
Installation Guidelines
Install the appropriate remote control following all instructions provided with the remote control.

Make sure the following items are checked:
• Correct length control cables and wiring harnesses
• Proper type and quality of cables and wiring harnesses
• Correct routing of cables and harnesses
• Appropriate slack in front of the outboard for remote control cables
• Proper routing of cables to prevent kinking
• Positioning and securing of cables and harnesses along their lengths to prevent movement or damage

Typical transom-mounted outboard installations require a 12 in. (30 cm) cable loop at the front of the outboard when the cables are routed from the side of the splash well.

IMPORTANT: Cables of the proper length, style, and quality that are correctly installed and adjusted will eliminate most control-related operational problems.

SystemCheck™ Monitor
The SystemCheck engine monitor alerts the operator of certain engine problems. Refer to the Operator’s Guide for detailed information related to the various warning signals.

IMPORTANT: Outboards with remote controls must be equipped with a SystemCheck (or equivalent) engine monitor. Operating the outboard without an engine monitor will void the warranty for failures related to monitored functions.

SystemCheck gauges are available in two sizes.
Battery Installation

Each outboard requires its own starting battery. Select a battery that meets or exceeds the minimum requirements.

Minimum 12 Volt Battery Recommendations

<table>
<thead>
<tr>
<th>Outboard Model</th>
<th>Battery Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 – 90 HP Evinrude</td>
<td>640 CCA (800 MCA), or 800 CCA (1000 MCA) below 32° F (0° C)</td>
</tr>
<tr>
<td>E-TEC</td>
<td></td>
</tr>
</tbody>
</table>

Location and Preparation

Proper installation will prevent battery movement while underway.
- Secure all batteries in protected locations.
- Position battery as close to the outboard as possible.
- Battery location must provide access for periodic maintenance.
- Use battery mounting trays or battery boxes on all battery installations.
- Connections and terminals must be covered with an insulator.
- Battery connections must be clean and free from corrosion.
- Read and understand the safety information supplied with the battery before installation.

WARNING

Keep the battery connections clean, tight, and insulated to prevent their shorting or arcing and causing an explosion. If the battery mounting system does not cover the connections, install protective covers. Check often to see that connections stay clean and tight.

Connections

IMPORTANT: Connect the battery positive (+) cable to the battery positive (+) post FIRST. Connect the battery negative (–) cable to the battery negative (–) post LAST.

Install a starwasher on the threaded battery post. Stack cables from the outboard, then cables from accessories. Finish this connection with a hex nut.

IMPORTANT: Do not use wing nuts to fasten ANY battery cables. Wing nuts can loosen and cause electrical system damage not covered under warranty.

Tighten all connections securely. Apply *Triple-Guard* grease to prevent corrosion.
Battery Cable Requirements

Evinrude/Johnson outboards are shipped with stranded copper battery cables for typical installations in which the starting battery is positioned close to the transom.

Specialized outboard installations with extended length battery cables require an increased wire size. Refer to the following table.

<table>
<thead>
<tr>
<th>Models</th>
<th>1 to 10 Ft. (0.3 to 3 m)</th>
<th>11 to 15 Ft. (3.4 to 4.6 m)</th>
<th>16 to 20 Ft. (4.9 to 6.1 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 – 90 Evinrude E-TEC</td>
<td>4 Gauge</td>
<td>2 Gauge</td>
<td>1 Gauge</td>
</tr>
</tbody>
</table>

IMPORTANT: Inadequate battery cables can affect the performance of an outboard’s high amperage start circuit and the cranking speed of the outboard. DO NOT use aluminum wire cables. Use ONLY AWG stranded copper wire cables.

Battery Switches and Multiple Batteries

A multiple battery setup, including marine battery selector switches, can provide flexibility in single and dual outboard installations.

Refer to _Battery and Switch Wiring Diagrams_ on p. 37 for various battery connection options.

The battery selection function can be used for emergency starting if a primary battery becomes discharged.

The OFF position of the battery selector switch can be used to minimize battery discharge during periods of non-use.

Typical battery functions

Primary
- Used as starting battery under normal operating conditions.
- Red (+) cable connected to battery selector switch.
- Primary battery is charged by connection to main red (+) outboard battery cable.

Dual outboard installations can utilize the opposing outboard’s primary battery as a secondary battery for emergency starting only.

Secondary
- Used as back-up starting battery under abnormal operating conditions.
- Red (+) cable connected to battery selector switch.
- Secondary battery is charged independently from primary battery.

Accessory
- Not used as starting battery.
- Isolated from outboard start function.
- No red (+) cable connected to battery selector switch.

IMPORTANT: Never connect an external battery isolator to the stator of an _Evinrude E-TEC_ outboard.
Battery Switch Requirements
Battery switches must meet the following requirements.
- The switch must be approved for marine use.
- The switch must be a “make before break” design to protect the charging system from a no-load condition.
- Switch amperage rating should be adequate for the outboard it will be used on.
- Use one battery switch for each outboard installed.
- Use the appropriate sized wire and terminals for all connections.
- Use AWG stranded copper wire.

Battery Switch Location
- Always locate battery switch(s) as close to the battery(s) as possible.
- Locate switch so that it cannot be accidently bumped or switched.
- Refer to the battery switch manufacturer’s installation instructions for specific information related to the installation of switch.
- Fasten all battery switches to solid surfaces.
- Route wiring as directly as possible.
- Support the battery switch as needed to prevent abrasion.
- Use appropriate wiring and connectors.
- Seal all connections and terminals with liquid neoprene or electrical sealer to prevent corrosion.

IMPORTANT: Insulate all battery positive (+) terminals to prevent shorting.

Battery Switch Operation
- Select the primary battery for normal operation.
- Secondary batteries should only be selected for emergency starting.
- ALL or BOTH switch position is for emergency starting only.

Provide operator with the documentation supplied by the battery switch manufacturer. Make sure that the operator is informed of proper battery switch operation.

IMPORTANT: The negative (−) terminals of a multiple 12-volt battery installation must be connected together.

![Diagram of battery switch](image-url)
Battery and Switch Wiring Diagrams

One outboard: Battery disconnect

One outboard: One primary starting battery; one secondary battery

Two outboards: Two starting batteries for each outboard

Positive (+) Battery cables
Negative (−) Battery cables
Two outboards: One primary starting battery for each outboard
Fuel System Requirements

Overview
Fuel systems must meet minimum specifications to insure the proper delivery of fuel to the outboard.

The guidelines established by the ABYC and U.S. Coast Guard should always be followed.

• Permanent fuel tanks must be properly vented outside of the hull.
• Remote fuel tank gas fills must be grounded.
• Permanent fuel tank pickups should have the correct anti-siphon valve installed to prevent fuel flow if a leak occurs in the fuel distribution system. Refer to ABYC Standard H-24.

Fuel Hose
All fuel hoses must be designated as fuel hose and approved for marine use.

• Use only fuel lines (or copper tubing) that meet the outboard minimum I.D. requirement.
• “USCG Type A1” fuel hose must be used between permanent fuel tanks and motor well fittings on inaccessible routings.
• Use “USCG Type B1” for fuel hose routings in motor well areas.
• Permanently installed fuel hoses should be as short and horizontal as possible.
• Use corrosion-resistant metal clamps on permanently installed fuel hoses.
• Multi-outboard applications require separate fuel tank pickups and hoses. (A fuel selector switch may be used for “kicker” motors as long as it has enough flow capacity for the larger outboard.)

Fuel System Primer
Outboards require a priming system capable of refilling the fuel system after periods of non-use.

Primer Bulbs
Primer bulbs that meet the outboard’s minimum inside diameter fuel line requirements are used on most outboards.

Install the primer bulb in the fuel supply hose as follows:
• The primer bulb should be installed in an accessible location.
• The arrow on the primer bulb must point in the direction of fuel flow.
• The fuel primer bulb must be positioned in the fuel supply hose so the primer bulb can be held with the arrow pointing “up” during priming.

Marine Primer Pump
The alternative to a primer bulb is a U.S. Coast Guard approved marine primer pump. Electric primer pumps offer the convenience of outboard priming from a dash-mounted momentary switch.
Fuel Filters
Boat-mounted fuel filters and water-separating fuel filter assemblies must meet the required fuel flow and filter specification. The filter must be mounted to a rigid surface above the “full” level of the fuel tank and accessible for servicing.

Fuel Filter Assembly, P/N 174176, meets all requirements for a water-separating fuel filter.

Outboard Fuel System Recommendations

<table>
<thead>
<tr>
<th>Component</th>
<th>25 HP – 130 HP Models</th>
<th>135 HP – 250 HP Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel tank pickup tube</td>
<td>5/16 in. (7.9 mm) min. I.D.</td>
<td>3/8 in. (9.5 mm) min. I.D.</td>
</tr>
<tr>
<td>Fuel fittings</td>
<td>1/4 in. (6.4 mm) min. I.D.</td>
<td>9/32 in. (7.1 mm) min. I.D.</td>
</tr>
<tr>
<td>Fuel supply hoses</td>
<td>5/16 in. (7.9 mm) min. I.D.</td>
<td>3/8 in. (9.5 mm) min. I.D.</td>
</tr>
<tr>
<td>Fuel tank pickup screen</td>
<td>100 mesh, 304 grade stainless steel wire, 0.0045 in. wire diameter, 1 in. (25 mm) long</td>
<td></td>
</tr>
<tr>
<td>Antisiphon valve</td>
<td>2.5 in. (63.5 mm) Hg maximum pressure drop at 20 gph (76 l/hr) flow</td>
<td></td>
</tr>
<tr>
<td>Remote fuel filter</td>
<td>0.4 in. Hg maximum pressure drop at 20 gph (76 l/hr) flow, 150 in.² (1290 cm²) of filter area</td>
<td></td>
</tr>
<tr>
<td>Maximum fuel pump lift height</td>
<td>Fuel pump should not be located more than 30 in. (76.2 cm) above bottom of fuel tank</td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT: Avoid using “in-line” fuel filters. The filter area and flow characteristics may not be adequate for high horsepower outboards.
Cable and Hose Installation

Before installation, identify all required wiring, cables, and hoses:
• Throttle and shift cables
• Modular Wiring System (MWS) harness
• Battery cables and switches
• Fuel supply hose
• Primer bulb or primer pump

Determine whether any additional wiring or hoses will be needed for accessory gauges or batteries:
• Speedometer pick-up hose
• Water pressure gauge hose
• Engine temperature sender wire

Cable and Wire Harness Routing

![Typical Small Splash Well](DRC7799)

![Typical Large Splash Well](DRC7797)

![Typical Engine Bracket](DRC7798A)

WARNING

Improper installation and routing of outboard controls could wear, bind, and damage components, causing loss of control.

Remote control cables, wiring, and hoses must follow a similar path into the lower motor covers. Select the best routing possible for the specific application. Proper remote control cable lengths are essential. Installations must provide adequate slack for all cables, wiring, and hoses. Check clearances of routings at all trim angles, at all steering positions, and at all possible combinations of outboard positioning.
Protective Sleeve/Conduit
Make sure all cables, wiring, and hoses have been identified and fitted to the appropriate lengths.

Next, locate appropriate shielding to protect the components that route to the outboard. An expandable “flexweave” sleeve or a flexible conduit may be used to bundle the cables together as they enter the lower motor cover.

All Evinrude/Johnson outboards are shipped with a lower motor cover grommet.

Battery Cables
Evinrude/Johnson outboards are equipped with premium quality battery cables that should be long enough for most installations.

When routing battery cables, be sure to:
- Route cables through the protective sleeve and to the appropriate location; and
- Use the most direct path to route the battery cables to the battery or battery switch.

Fuel Hose
Route the fuel supply hose with adequate slack to allow for the primer bulb to be held with the arrow pointing “up” during use.

The fuel hose routing could be the only hose routed outside of the protective sleeve or conduit. Electric primers or manual primers may not require this consideration.
- Route fuel hoses from boat fuel system to outboard with adequate slack.
- Install the primer bulb with the arrow pointing in the direction of fuel flow to the outboard.
- Connect the fuel supply hose from the fuel tank to the fuel supply line at the outboard.

IMPORTANT: Do not permanently fasten this connection until the boat’s fuel system has been primed.
Oetiker Clamp Servicing

Use Oetiker clamps for making hose connections. These clamps provide corrosion resistance, minimize the potential for abrasion of rigging components, and provide solid, permanent connections.

The selection and installation of an Oetiker clamp is essential in the proper sealing of hose connections. The clamp identification numbers appear in millimeters on the side of the clamp, near the top of the ear. Refer to Oetiker Stainless Steel Stepless Clamps chart for actual dimensions.

WARNING

DO NOT re-use Oetiker clamps. Fuel leakage could contribute to a fire or explosion.

The nominal size of the clamp should be chosen so that, when it is assembled on the connecting part, the outside diameter of the hose lies approximately in the middle of the clamping range of the clamp.

Oetiker Stainless Steel Stepless Clamps

<table>
<thead>
<tr>
<th>CLAMP NO.</th>
<th>NOMINAL O.D.</th>
<th>INCHES</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>Clamp I.D.</td>
<td>Inches</td>
<td>MM</td>
</tr>
<tr>
<td>346930</td>
<td>95</td>
<td>3/8</td>
<td>9.5</td>
</tr>
<tr>
<td>348838</td>
<td>105</td>
<td>13/32</td>
<td>10.5</td>
</tr>
<tr>
<td>349516</td>
<td>113</td>
<td>7/16</td>
<td>11.3</td>
</tr>
<tr>
<td>347107</td>
<td>133</td>
<td>1/2</td>
<td>13.3</td>
</tr>
<tr>
<td>347108</td>
<td>138</td>
<td>17/32</td>
<td>13.8</td>
</tr>
<tr>
<td>346931</td>
<td>140</td>
<td>34/64</td>
<td>14</td>
</tr>
<tr>
<td>346785</td>
<td>145</td>
<td>9/16</td>
<td>14.5</td>
</tr>
<tr>
<td>346786</td>
<td>157</td>
<td>5/8</td>
<td>15.7</td>
</tr>
<tr>
<td>348839</td>
<td>170</td>
<td>11/16</td>
<td>17</td>
</tr>
<tr>
<td>346150</td>
<td>185</td>
<td>23/32</td>
<td>18.5</td>
</tr>
<tr>
<td>346151</td>
<td>210</td>
<td>13/16</td>
<td>21</td>
</tr>
<tr>
<td>346152</td>
<td>256</td>
<td>1</td>
<td>25.6</td>
</tr>
<tr>
<td>346153</td>
<td>301</td>
<td>1 3/16</td>
<td>30.1</td>
</tr>
<tr>
<td>349759</td>
<td>316</td>
<td>1 1/4</td>
<td>31.6</td>
</tr>
<tr>
<td>349729</td>
<td>410</td>
<td>1 5/8</td>
<td>41</td>
</tr>
</tbody>
</table>
Clamp Installation
A constant stress should be applied to close the ear clamps. This method ensures a positive stress on the hose and does not result in excessive compression or expansion of the band material.

IMPORTANT: Use only *Oetiker* recommended tools to close *Oetiker* stepless clamps.

Oetiker pincers are available in the *Evinrude/Johnson Genuine Parts and Accessories Catalog* (P/N 787145).

- Position correct size clamp over hose.
- Install hose on fitting.
- Close clamp ear fully with *Oetiker* pincers (pliers).

Clamp Removal

Method 1: Position *Oetiker* pincers across clamp ear and cut clamp.

Method 2: Lift end of stepless clamp with screwdriver.

Method 3: Use *Oetiker* pincers (pliers) to grip clamp. Pull clamp off of connection and discard.
Control Cable Identification

IMPORTANT: Control cable function must be identified before rigging outboard.

Identify each control cable:
- Put the control handle into NEUTRAL position. The throttle cable casing guide will retract completely and the shift cable casing guide will go to the midpoint of its travel.

Extend the control cables and lubricate them with *Triple-Guard* grease.

1. Shift cable casing guide extended to midpoint
2. Throttle cable casing guide retracted

DP0811
OUTBOARD INSTALLATION

Hull Preparation

Maximum Capacity

- Check transom strength and height.

WARNING

Do not overpower the boat by installing an outboard that exceeds the horsepower indicated on the boat’s capacity plate. Overpowering could result in loss of control.

Before installing outboard:
- Refer to the boat manufacturer's certification label for maximum horsepower rating.
- Refer to ABYC Standards to determine the maximum horsepower capacity for boats without certification labeling.

WARNING

DO NOT install an outboard on a curved or irregular surface. Doing so can wear, bind, and damage components, causing loss of control.

Top Edge of Transom or Bracket
Transom thickness or off-sets must also be considered. The top edge of the transom or bracket must provide a proper surface for stern brackets. The stern brackets must contact the flat surface of the transom or bracket. Modify moldings or components that prevent the stern brackets from resting against the transom surface. Do not modify transom brackets.

Transom Clearances
Make sure the transom and splash well area provide adequate clearances.
- The top edge of the transom should be wide enough to allow full steering travel. The ABYC standard for most single outboard installations is 33 in. (84 cm).
- Check cable and hose routing clearances.
- Make sure there is clearance for mounting bolts and washers. Check the inside area of the transom for obstructions prior to drilling holes.

Water Flow
Inspect the hull area directly in front of the mounting location.
- Boat-mounted equipment should not create turbulence in the water flow directly in front of the outboard's gearcase. Turbulence or disruptions in the water flow directly in front of the gearcase will affect engine cooling and propeller performance.
- Avoid locating outboard centerlines within 3 in. (76 mm) of bottom strakes on dual-outboard installations.

Mounting Surface
Inspect transom surface prior to drilling mounting holes.
- The transom should meet ABYC Standards.
- The transom must be flat and cannot have any protrusions.
- The transom angle should be approximately 14 degrees.
Transom Brackets and Jack Plates
When mounting an outboard on boats equipped with transom brackets or jack plates, refer to the manufacturer's recommendations.

- Confirm maximum weight and horsepower capacities.
- Jack plate assemblies must provide a one-piece mounting surface to support the outboard, hydraulic unit, and steering system.

Mounting Hardware

⚠️ WARNING ⚠️
Use all mounting hardware supplied with the outboard to help ensure a secure installation. Substituting inferior hardware can result in loss of control.

The required outboard mounting bolts, aluminum backing plates, washers, and nuts are used to attach the outboard to the frame of the shipping palette.

Refer to the outboard's parts catalog for alternate length mounting bolts or replacement components.

- Use only Evinrude/Johnson Genuine Parts or parts of equivalent type, strength, and material.
- Use the mounting hardware provided with outboard whenever possible.

Transom Measuring and Drilling

Hull Centerline
Locate the centerline of the boat transom as it relates to the hull (bottom) of the boat.

Use a straightedge to draw a line connecting the port and starboard chines. The chines should be used as reference points for determining the centerline of the hull.

Use a framing square to accurately place a line on the transom. The centerline of the hull should be in line with the keel of the hull and perpendicular to the midpoint of the line connecting the port and starboard chines.

Dual-Outboard Centerlines
The following table lists standard ABYC centerline spacing between outboards in dual installations:

| 2 and 3 cylinder | 22 in. (559 mm) |

Some applications may require changes in this dimension to avoid strakes, to adjust for transom height, or for performance reasons. Best performance can be determined only through testing. Refer to boat manufacturer for recommendations.
INSTALLATION AND PREDELIVERY
OUTBOARD INSTALLATION

If the standard spacing does not allow full steering travel in a particular installation, it may be necessary to increase the spacing.

IMPORTANT: Some steering systems may require additional spacing. Refer to steering system manufacturer for recommendations.

The width of the top edge of the transom should be more than twice the dual-outboard centerline spacing dimension. Bracket installations may not require this consideration.

Measure the transom for dual-outboard spacing after the centerline of the hull is established.

Divide the spacing dimension by two. Use the resulting number to space the outboard centerlines from the hull centerline.

EXAMPLE: A 26 in. (660 mm) dual-outboard spacing would result in two outboard centerlines, each 13 in. (330 mm) from the hull centerline.

Transom Heights

Make sure the transom height is consistent with the height of the outboard to be installed.

- A 19 to 21 in. (48.3 to 53.3 cm) transom height uses a 20 in. (50.8 cm) shaft outboard.
- The shaft length of the outboard being installed should come close to matching the transom height of the boat.

Determine transom height by measuring from the top edge of the transom, along the centerline.

For dual-outboard installations, transom height should be measured at the outboard centerlines.

Use a straightedge as a reference to extend the bottom of the boat.

Position the straightedge along centerline. The distance from the top edge of the straightedge to the top edge of the transom is the actual transom height.

1. Port centerline
2. Hull centerline
3. Starboard centerline
Transom Drilling Locations
All models use the standard ABYC 4-Bolt mounting pattern.

Transom drill fixture, P/N 434367 or P/N 385368, may be used as a guide for correct hole placement. If drill fixture is unavailable, refer to Drilling and Hardware Diagram on p. 50 for measurements.

Position drill fixture on top of transom or bracket and align indicator points with centerline.

The indicators are affected by the squareness of the top edge of the transom. If either side of the fixture must be raised more than ¼ in. (6 mm) above the transom's top surface to make both indicators align, the transom must be modified.

IMPORTANT: DO NOT assume that the top edge of the transom is straight. Position the drill fixture based on measurements aligning it to the bottom of the hull.

IMPORTANT: Maintain at least 1.75 in. (45 mm) of transom surface above the top mounting bolts.

Make sure that the proposed mounting hole locations will provide adequate clearance for mounting bolts and washers.

Check the inside area of the transom for obstructions prior to drilling mounting holes.

Check transom height(s) at centerlines prior to drilling any mounting holes.

Drill four ½ in. (13 mm) mounting holes in the appropriate locations.

IMPORTANT: Be sure to drill the required holes perpendicular to transom surface.
Drilling and Hardware Diagram

IMPORTANT: This is not a template.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Part Number</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Center of Transom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Top of Transom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>1/2" Bolt Hole Locations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Outside of Transom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Bolt *</td>
<td>4</td>
<td>Choose from the following bolt sizes:</td>
</tr>
<tr>
<td>6.</td>
<td>318272 Plate</td>
<td>2</td>
<td>327053 3 in. (76 mm)</td>
</tr>
<tr>
<td>7.</td>
<td>318273 Retainer</td>
<td>2</td>
<td>318573 3 1/2 in. (89 mm)</td>
</tr>
<tr>
<td>8.</td>
<td>319886 Screw</td>
<td>4</td>
<td>313327 4 in. (102 mm)</td>
</tr>
<tr>
<td>9.</td>
<td>307238 Washer</td>
<td>2</td>
<td>336676 4 1/2 in. (114 mm)</td>
</tr>
<tr>
<td>10.</td>
<td>320248 Washer</td>
<td>4</td>
<td>320248 5 in. (127 mm)</td>
</tr>
<tr>
<td>11.</td>
<td>313623 Nut</td>
<td>4</td>
<td>321577 6 in. (152 mm)</td>
</tr>
<tr>
<td>12.</td>
<td>318572 Cap</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Lifting the Outboard

Lifting Fixtures

WARNING

To avoid personal injury, make sure the lifting capacity of the hoist is at least twice the weight of the outboard.

DO NOT allow the lift hook or chain from the hoist to come in contact with any part of the engine during lifting.

Remove shipping carton.

Remove any banding material used to secure outboard to shipping palette. The mounting hardware used to attach the outboard to the shipping frame is reused to fasten outboard to boat transom.

Use correct Lifting Fixture to lift outboard:

<table>
<thead>
<tr>
<th>Model</th>
<th>Lifting Fixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 and 3-Cylinder Evinrude E-TEC</td>
<td>P/N 396748</td>
</tr>
</tbody>
</table>

Position lifting tool on flywheel and seat the three screws completely.

CAUTION

If chain hooks or snap hooks are too large, the integrated lifting eye could break. The outboard could drop suddenly and cause serious damage.

Before Mounting Outboard to Transom

Some rigging components that attach directly to the outboard should be assembled before the outboard is mounted to the boat's transom. Steering system components and gearcase speedometer pickup hoses are the most common. Determine what equipment will be installed prior to mounting the outboard to the transom or bracket.

Steering Systems

Mechanical Cables

All *Evinrude/Johnson* outboards equipped with tilt tubes are designed to be compatible with mechanical steering systems that meet ABYC Standard P-17. Single-cable mechanical steering systems can be used on single or dual-outboard installations if an ABYC-approved steering link is used.

Dual-cable mechanical steering helps provide firm steering control at high speeds.

Extend the output end of the steering cable and lubricate the inner core of cable prior to installation.

Fasten appropriate chain hook to eye of tool. Carefully hoist outboard with chain and unbolt outboard mounting brackets from frame.

IMPORTANT: Use only the 1 1/8 in. (short) screws, P/N 398067, included with the tool to avoid damage to electronic components under the flywheel.

ABYC-approved mechanical steering cable.
INSTALLATION AND PREDELIVERY

OUTBOARD INSTALLATION

IMPORTANT: Install steering cable through tilt tube **before** mounting outboard on transom. Tighten nut securely.

WARNING

DO NOT use cable over pulley steering on 40 HP and larger outboards.

Manual Hydraulic Steering

Manual hydraulic steering systems use hydraulic fluid to transfer motion and load from the helm to the outboard. Hydraulic steering systems offer certain design advantages that can be beneficial in some applications.

Use only a hydraulic steering system designed for the specific application. Refer to the steering system manufacturer’s specifications for recommended applications.

IMPORTANT: Some hydraulic steering systems require additional centerline spacing in dual-outboard installations. Refer to steering system manufacturer’s recommendations and to **Dual-Outboard Centerlines** on p. 47.

Drag Links

Install cable wiper nut on tilt tube and connect drag link to the correct location on the steering arm. For single motor, single cable applications, the drag link should be installed in the rear hole.

WARNING

DO NOT use cable over pulley steering on 40 HP and larger outboards.

Use the correct drag link to allow full steering travel:

<table>
<thead>
<tr>
<th>Model</th>
<th>Drag Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 – 90 Evinrude E-TEC</td>
<td>P/N 175125</td>
</tr>
</tbody>
</table>
Outboard Mounting

Mounting Height

Boat performance depends on outboard mounting height.

Generally, the anti-ventilation plate of the gear-case should be in alignment with the bottom of the hull. Conventional V-hulls often perform well with the anti-ventilation plate approximately 1 in. (25 mm) above the bottom of the hull.

Boats that exceed 50 MPH may benefit from higher outboard heights. Consult the boat manufacturer for specific outboard mounting height information for a particular hull.

Test outboard and boat performance at different heights until the best performance is achieved.

IMPORTANT: Be sure that outboard water pressure is not adversely affected by the mounting height of the outboard.

IMPORTANT: Use a marine sealant rated for above or below waterline use. RTV silicone is not approved for below waterline use. Polyurethane sealants are not easily removed and may damage outboard or boat mounting surfaces when removed.

Apply marine sealer under hex heads of bolts, on the mounting plates, and to the bolt shanks.

Assemble transom mounting plates on mounting bolts.

Apply sealant around the mounting bolt holes on the outer surface of the transom.

Install the mounting bolts through the transom from the inside of the boat.

Position the square aluminum transom mounting plates (when applicable) so the retainer holes are horizontal.

Position hex head of bolt with flats toward holes in the mounting plates. Install retainer over hex head of the bolt and secure it with screws provided.

Install all washers and nuts. Torque nuts and bolts to 40 ft. lbs. (54 N·m).

WARNING

If either side of the transom deforms or cracks when the bolts are tightened to their recommended torque, the transom construction may not be adequate or may be deteriorated. Structural failure of the transom could result in loss of boat control and injury to the occupants.
OUTBOARD RIGGING

Cable, Hose, and Wire Routing

Remove cable retainer from anchor block. Apply a liberal amount of *Triple-Guard* grease to both anchor block pockets.

Move the remote control handle to NEUTRAL and confirm that throttle is in the IDLE position.

Apply soapy water to the inside surfaces of grommet and install cables and fuel line as shown:

Place the grommet into position in the lower engine cover.

When grommet is in place and all cables have been installed, tighten a tie strap around the outside of the grommet to form a watertight seal around the cables.

Control Cable Adjustments

IMPORTANT: DO NOT complete final attachment of cables to throttle and shift levers until all cables, wires, and hoses have been routed and grommet has been placed into the lower engine cover.

Pull firmly on shift cable casing to remove backlash. With outboard in NEUTRAL, place the cable trunnion into the lower anchor pocket and adjust the trunnion nut so that the casing fits onto the shift lever pin.
If there are not enough threads on the shift cable to allow the adjustment, or if the gearcase does not shift fully into FORWARD or REVERSE, refer to **SHIFT ROD ADJUSTMENT** on p. 265 and **Shift Linkage Adjustment** on p. 230.

Pull firmly on throttle cable casing to remove backlash. With engine throttle cam against stop, place the cable trunnion into the upper anchor pocket and adjust the trunnion nut so that the casing fits onto the throttle lever pin.

Move control handle to FORWARD and pull back slowly to NEUTRAL. Make sure the engine throttle lever is against the stop. If not, remove backlash by adjusting cable trunnion nut.

Secure control cables to the throttle and shift lever pins. For proper installation, review the following steps:
- Place washer on pin.
- Position retainer clip with straight section on the bottom and angled section on the top.
- Use long noses pliers to insert straight section of clip into linkage pin hole.
- Push the clip towards the hole while lifting on the curved end with the pliers.
- Be sure retainer clip fully engages the pin.
- Lock the retainer by moving the angled section behind the straight section.

Make sure remote control provides accurate throttle and shift operation. Then, install cable retainer and torque screw 60 to 84 in. lbs. (7 to 9 N·m).

IMPORTANT: After installation, make sure there is enough clearance for all cables to avoid binding or chafing through all engine steering and tilting angles.
Electrical Harness Connections

Provide sufficient slack at outboard end to permit steering and tilting of outboard without binding cables.

Place the wiring harness through notch in lower motor cover and route to the recess in the flywheel cover. Secure the cable with a tie strap as shown:

Before installing connectors, check that the seal is in place. Clean off any dirt from connectors. Apply a light coat of Electrical Grease to the seal. Push connectors together until latched.

IMPORTANT: Check to make sure wires are not pinched and cannot contact flywheel.

Water Pressure Gauge

Fitting and hose for accessory water pressure gauge is connected at top of cylinder block adjacent to the pressure relief valve housing.
FUEL AND OIL PRIMING

Fuel Requirements

⚠️ WARNING ⚠️

Gasoline is extremely flammable and highly explosive under certain conditions. Improper handling of fuel could result in property damage, serious injury or death.

Always turn off the outboard before fueling.

Never permit anyone other than an adult to refill the fuel tank.

Do not fill the fuel tank all the way to the top or fuel may overflow when it expands due to heating by the sun.

Remove portable fuel tanks from the boat before fueling.

Always wipe off any fuel spillage.

Do not smoke, allow open flames or sparks, or use electrical devices such as cellular phones in the vicinity of a fuel leak or while fueling.

Minimum Octane

Evinrude/Johnson outboards are certified to operate on unleaded automotive gasoline with an octane rating equal to or higher than:

- 87 (R+M)/2 AKI, or
- 90 RON

Use unleaded gasoline that contains methyl tertiary butyl ether (MTBE) **ONLY** if the MTBE content does not exceed 15% by volume.

Use alcohol-extended fuels **ONLY** if the alcohol content does not exceed:

- 10% ethanol by volume
- 5% methanol with 5% cosolvents by volume

When using alcohol-extended fuels, be aware of the following:

- The boat’s fuel system may have different requirements regarding the use of alcohol fuels. Refer to the boat’s owner guide.
- Alcohol attracts and holds moisture that can cause corrosion of metallic parts in the fuel system.
- Alcohol blended fuel can cause engine performance problems.
- All parts of the fuel system should be inspected frequently and replaced if signs of deterioration or fuel leakage are found. Inspect at least annually.

IMPORTANT: Always use fresh gasoline. Gasoline will oxidize, resulting in loss of octane and volatile compounds, as well as the production of gum and varnish deposits which can damage the outboard.

Additives

IMPORTANT: The only fuel additives approved for use in _Evinrude_ outboards are 2+4® fuel conditioner and _Evinrude/Johnson_ Fuel System Cleaner. **Use of other fuel additives can result in poor performance or engine damage.**

Evinrude/Johnson 2+4 Fuel Conditioner will help prevent gum and varnish deposits from forming in fuel system components and will remove moisture from the fuel system. It can be used continuously and should be used during any period when the outboard is not being operated on a regular basis. Its use will reduce spark plug fouling, fuel system icing, and fuel system component deterioration.

Evinrude/Johnson Fuel System Cleaner will help keep fuel injectors in optimal operating condition.
Fuel System Priming

Vent Line Clamp
In compliance with Code of Federal Regulations, 49 CFR §173.220, all outboards utilizing a fuel vapor separator must be shipped with a vent line clamp installed. This clamp must be removed prior to attempting to prime the fuel system or start the outboard for the first time.

IMPORTANT: Failure to remove the clamp may cause fuel starvation and poor running qualities.

Priming the Fuel System

Insert the fuel supply hose from the fuel tank into a suitable container. Squeeze the fuel primer bulb or activate the boat-mounted electric fuel primer until fuel flows from the fuel hose.

Once fuel flow is observed, connect fuel supply hose from fuel tank to hose fitting on outboard. Secure hose with Oetiker clamp.

Route fuel supply hose through flexweave sleeve if necessary. The fuel primer bulb must be accessible.

Use the primer to fill the outboard's fuel system.

Once the fuel system has filled, pressurize the fuel supply hoses by squeezing the fuel primer bulb or momentarily activating the boat-mounted electric fuel primer.

Observe all fuel lines, both in the boat and on the outboard. Repair any fuel leaks.

The high-pressure fuel circuits and injectors will prime as the outboard is cranked with the starter.

WARNING

Fuel vapors are highly flammable. Perform the following procedure in a well ventilated area. Extinguish all smoking materials and make certain no ignition sources are present.

Failure to check for fuel leaks could allow a leak to go undetected, resulting in fire or explosion and may cause personal injury or property damage.
Oil Requirements

IMPORTANT: Failure to follow these recommendations could void the outboard warranty if a lubrication-related failure occurs.

Evinrude/Johnson XD100, XD50, or XD30 outboard oil is recommended for use in Evinrude E-TEC outboards.

Evinrude/Johnson XD100 outboard oil is preferred for use in Evinrude E-TEC models.

If these oils are not available, you must use an oil that meets NMMA TC-W3 certification.

Engine Lubricant Below 32°F (0°C)

If the outboard will be operated in temperatures below freezing (32°F, 0°C), use *Evinrude/Johnson XD100.

Oil Injection Rate

If the owner desires, the Engine Management Module (EMM) on *Evinrude E-TEC* models can be programmed for the exclusive use of *XD100*, which will significantly reduce oil consumption.

CAUTION

Running an *Evinrude E-TEC* outboard on other grades of oil while set to the *XD100* oil ratio will result in increased engine wear and shortened outboard life.

The TC-W3 OIL control setting allows the outboard to be run on TC-W3 outboard lubricant. Changing to the optional *XD100 OIL CONTROL* setting requires the use of *Evinrude XD100* outboard lubricant. Running the outboard in *XD100 OIL* mode can reduce oil consumption by approximately one third. Refer to *Oil Control* on p. 98.

Powerhead oil programming labels are provided to identify *EMM* oil programming. Install the correct label to alert user to specific oil requirements.

SystemCheck Low Oil Warning Test

IMPORTANT: Leave oil tank empty until low oil warning has been tested.

Turn key switch to ON.

The SystemCheck gauge should initiate a test mode, momentarily sound the warning horn, and illuminate all four indicator lights. The “LOW OIL” light should remain illuminated.

Fill the oil tank with the recommended oil.

The “LOW OIL” light should turn off.

Turn key switch to OFF and install oil fill cap.
Oil Supply Priming

Follow these steps for initial outboard set-up:

• Fill the oil tank with XD100, XD50, or XD30 oil.
• Use the Evinrude Diagnostics Software program to confirm that the EMM is programmed for the type of oil being used.
• Start the outboard and use the oil priming function in the software for a minimum of 90 seconds to make sure the system is completely primed.

START outboard and run it at IDLE. Use the diagnostic software program to activate “Prime Oil.”

Break-In Oiling

IMPORTANT: DO NOT add oil in the fuel tank on Evinrude E-TEC models.

The Engine Management Module (EMM) will automatically supply extra oil to the engine during the first two hours of operation above 2000 RPM.

Follow these steps for initial outboard set-up:

• Use the Evinrude Diagnostics Software program to confirm that the break-in program has been initiated. Refer to Oil Control on p. 98.
• The oil tank should be filled and the oil level accurately marked for reference.
• Fill the fuel tank with the recommended fuel.

IMPORTANT: The operator must monitor the oil tank level to confirm oil consumption. This may require several hours of operation above idle speed.

IMPORTANT: All clear “blue” oil distribution hoses on the powerhead should fill with oil as the air is purged from the lines. Temporarily disconnect the fuel supply hose, which will relieve pressure and help prime the oil-to-fuel hose.

Observe oil flow through the oil distribution hoses.

The oiling system can also be primed using the Self-Winterizing feature if diagnostic software is not available. Refer to STORAGE on p. 81.
BEFORE START-UP

Gearcase Lubricant
With outboard in vertical position, check the gearcase lubricant level:
• Remove the lubricant level plug. Lubricant must be even with the bottom of the threaded hole.
• A clean tie strap can be used as a “dip stick” if the lubricant level is not obvious.
• Add HPF XR gearcase lubricant as needed.

Oil Level
Make sure oil tank contains an adequate supply of the correct lubricant for the outboard and that the SystemCheck Low Oil Warning Test test has been performed.

When starting the outboard for the first time, refer to Oil Supply Priming on p. 60.

Trim and Tilt Fluid
Make sure trim and tilt reservoir is full before running outboard:
• Tilt the motor up and engage the tilt support.
• Remove filler cap and check fluid level.
• If necessary, add enough Evinrude/Johnson Biodegradable TNT Fluid to bring fluid level even with bottom of fill cap hole when unit is at full tilt. Refer to Reservoir Fluid on p. 287.
RUNNING CHECKS

WARNING

DO NOT run outboard without a water supply to the outboard's cooling system. Cooling system and/or powerhead damage could occur.

DANGER

DO NOT run the engine indoors or without adequate ventilation or permit exhaust fumes to accumulate in confined areas. Engine exhaust contains carbon monoxide which, if inhaled, can cause serious brain damage or death.

DANGER

Contact with a rotating propeller is likely to result in serious injury or death. Assure the engine and prop area is clear of people and objects before starting engine or operating boat. Do not allow anyone near a propeller, even when the engine is off. Blades can be sharp and the propeller can continue to turn even after the engine is off.

SystemCheck Operation

Attach emergency stop lanyard.

Turn key switch to ON.

Observe the SystemCheck self-test function. Warning horn should sound for 1/2 second and all warning indicator lights should turn on at the same time, then turn off one at a time.

Fuel System

Perform running checks of the fuel system by following these steps:

- Squeeze fuel primer bulb until hard or activate electric primer. Observe all fuel hoses and connections. Repair any leaks.
- Start outboard. Inspect all hoses and connections. Repair any leaks or misrouted hoses immediately.

Emergency Stop / Key Switch

Check emergency stop function. With outboard running at IDLE, pull safety lanyard from emergency stop switch. Outboard must stop immediately.

Remote Control Operation

Make sure that control can be easily moved into all gear and throttle settings. Do not shift remote control when outboard is not running.

Start-In-Gear Prevention

Start outboard and shift remote control lever to FORWARD.

Turn outboard OFF while remote control is in FORWARD.

Attempt restarting the outboard. Outboard should not start.

Pull remote control lever back to NEUTRAL and restart outboard.

Shift remote control lever to REVERSE. Turn outboard OFF while remote control is in REVERSE.

Attempt restarting the outboard. Outboard should not start.

WARNING

Make certain that the starter will not operate when the outboard is in gear. The start-in-gear prevention feature is required by the United States Coast Guard to help prevent personal injuries.
Tachometer Pulse Setting

Confirm accuracy of tachometer reading.
• Adjust dial on back of tachometer to required setting (the outboard should not be running).

<table>
<thead>
<tr>
<th>Outboard Model</th>
<th>Tachometer Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 – 90 Evinrude E-TEC</td>
<td>6 Pulse or 12 Pole</td>
</tr>
</tbody>
</table>

Water Pump Overboard Indicator

A steady stream of water should flow from the overboard indicator.

Operating Temperature

An outboard run at idle speed should achieve a temperature based on the engine’s thermostatic control. In general, the powerhead temperature should reach at least 104°F (40°C) after five minutes of idling. Check that the powerhead reaches idle temperature. Refer to TECHNICAL DATA on p. 18.

Idle Speed

Outboard idle speed is essential for proper outboard control and shift function. Make certain the outboard idles within the specified idle RPM range. If the outboard is run on a flushing device, the idle speed and quality may not be representative of actual “in water” use.

Break-In

When the outboard is delivered, the customer should be referred to the correct break-in procedure in the Operator’s Guide.

The Engine Management Module (EMM) on new Evinrude E-TEC models is programmed to automatically supply extra oil to the engine during the first few hours of operation above 2000 RPM.

The dealer may use the Diagnostic Software program to confirm that the break-in program has been initiated. Refer to Oil Control on p. 98.
PROPELLERS
Propeller Selection

Water testing with various propeller designs and sizes is the best method of propeller selection.

The correct propeller, under normal load conditions, will allow the engine to run near the midpoint of the RPM operating range at full throttle. Refer to TECHNICAL DATA on p. 18.

IMPORTANT: If the propeller blades have too much pitch, the engine will operate below its normal range at full throttle. Power will be lost, and powerhead damage could occur. If the propeller blades have too little pitch, the engine will operate above its normal range and damage from overspeeding could occur.

When selecting a propeller, consider the following:
- Use an accurate tachometer to determine the engine’s full-throttle RPM.
- The outboard should be trimmed for top speed.
- Select a propeller that suits the customer’s application and allows the engine to run near the midpoint of the full-throttle operating range when the boat has a normal load.
- Occasionally, one propeller will not cover a wide range of boat applications — water skiing to high speed performance boating. In such cases, it might be necessary to have a propeller for each situation.
- Refer to the Evinrude/Johnson Genuine Parts and Accessories Catalog for propeller styles and sizes.
- Right-hand propellers are considered standard rotation propellers. When propelling a boat forward, the propeller rotates in a right-hand (clockwise) direction as viewed from the rear.
- Left-hand propellers are considered counter-rotation propellers. When propelling a boat forward, the propeller rotates in a left-hand (counterclockwise) direction as viewed from the rear.

CAUTION
Selection of the wrong propeller could reduce engine service life, affect boat performance, or cause serious damage to the powerhead.

1. Percentage of horsepower (kw)
2. Engine RPM
3. Horsepower curve
4. Full throttle operating range
5. Midpoint of full throttle operating range, horsepower rating in kilowatts (kw)
6. Engine is overloaded at full throttle
7. Engine is overspeeding at full throttle

WARNING
For dual-outboard installations, always check to be sure propellers are installed on the correct engines before aggressively operating the boat.

IMPORTANT: If the propeller blades have too much pitch, the engine will operate below its normal range at full throttle. Power will be lost, and powerhead damage could occur. If the propeller blades have too little pitch, the engine will operate above its normal range and damage from overspeeding could occur.

WARNING
For dual-outboard installations, always check to be sure propellers are installed on the correct engines before aggressively operating the boat.
Propeller Hardware Installation

WARNING

When servicing the propeller, always shift the outboard to NEUTRAL, turn the key switch OFF, and twist and remove all spark plug leads so the engine cannot be started accidentally.

Apply *Triple-Guard* grease to the entire propeller shaft before installing the propeller.

Install thrust bushing onto propeller shaft with shoulder of thrust bushing facing aft. Taper of bushing must match taper of propshaft.

Install propeller on propeller shaft by aligning splines and pushing until seated on the thrust bushing.

IMPORTANT: Depending on propeller style, different thrust bushings, spacers, and cotter pin keepers are used. See the *Evinrude/Johnson Genuine Parts* book for a complete listing and descriptions.

Install the spacer, engaging the propeller shaft splines.

WARNING

When servicing the propeller, always shift the outboard to NEUTRAL, turn the key switch OFF, and twist and remove all spark plug leads so the engine cannot be started accidentally.

Wedge a block of wood between propeller blade and the anti-ventilation plate.

Install the propeller nut and torque to:
- With Keeper – 70 to 80 ft. lbs. (95 to 109 N·m)
- Without Keeper – 120 to 144 in. lbs. (13.6 to 16.3 N·m)

If cotter pin holes in the propeller nut (Without Keeper) and propeller shaft are not aligned, tighten the nut until they are in line. Do not loosen.

Insert a new cotter pin through the propeller nut and shaft, or propeller nut keeper and shaft. Bend its ends over the nut to secure the assembly.

IMPORTANT: After fastening propeller nut, make sure outboard is in NEUTRAL and carefully spin propeller. Propeller must turn freely and should not spin off center. If propeller appears to wobble, check for possible bent propeller shaft.
FINAL ADJUSTMENTS

Tilt Limit Switch Adjustment

WARNING

If the outboard does not clear all boat parts when tilted fully or turned side to side, safety related parts could be damaged in the course of such outboard movement. Injuries could result from loss of boat control.

Adjust the tilt limit switch on all new outboard installations.

Check the clearance between outboard(s) and the boat's motor well and transom area. Tilt outboard(s) to highest point of clearance and turn the steering system lock to lock.

If the outboard contacts the boat's motor well when fully tilted, adjust the tilt limit cam to reduce full-tilt position.

IMPORTANT: The tilt limit cam will not prevent the outboard from overriding the adjustment if the outboard is tilted manually.

Use the trim/tilt switch and trim the outboard IN all the way.

Rotate the LOWER adjustment tab UP to reduce the maximum tilt. Rotate the UPPER adjustment tab DOWN to increase the maximum tilt position.

Confirm the adjustment by tilting the outboard fully, using the trim/tilt switch.

Repeat this procedure until the tilt limit switch stops the outboard's upward travel before it contacts the motor well.

To prevent damage to equipment, provide additional motor well clearance when it is needed. Consider either changing the outboard mounting position or modifying the boat if the possibility for interference and damage exists.

WARNING

Adjusting the tilt limit cam will NOT prevent the outboard from tilting fully and contacting the motor well if the gearcase hits an object at high speed. Such contact could damage the outboard and boat and injure boat occupants.
Trim Sending Unit Adjustment
Tilt the outboard and engage the tilt support.

Temporarily install a thrust rod, P/N 436541, in the number 3 hole.

Loosen the sending unit screws, to allow the sending unit to pivot.

Disengage the tilt support. Lower the outboard against the thrust rod.

Observe the trim gauge. If the needle does not show center position, tilt the outboard up and adjust the sending unit by pivoting it up or down.

Lower the outboard against the thrust rod to check adjustment. Repeat adjustment, if necessary.

After adjustment is correct, tilt the outboard up, tighten the two sending unit screws, and remove the thrust rod.

WARNING

When the outboard is returned to the customer, the trim limiter rod must be installed and in the same location as it was when the motor was brought in for service. Leaving the trim limiter rod out, or changing the adjustment, could allow the motor to unexpectedly trim in too far and cause loss of control.
Trim Tab Adjustment

WARNING

Improper trim tab adjustment can cause difficult steering and loss of control.

A propeller will generate steering torque when the propeller shaft is not running parallel to the water’s surface. The trim tab is adjustable to compensate for this steering torque.

IMPORTANT: A single trim tab adjustment will relieve steering effort under only one set of speed, outboard angle and load conditions. No single adjustment can relieve steering effort under all conditions.

WARNING

To prevent accidental starting while servicing, twist and remove all spark plug leads.

If the boat pulls to the left or right when its load is evenly distributed, adjust the trim tab as follows:

- With the remote control in NEUTRAL and the engine OFF, loosen the trim tab screw. If the boat pulled to the right, move rear of the trim tab slightly to the right. If the boat pulled to the left, move rear of the trim tab slightly to the left.
- Tighten the trim tab screw to a torque of 35 to 40 ft. lbs. (47 to 54 N·m).

Test the boat and, if needed, repeat the procedure until steering effort is as equal as possible.

Outboards with High Transom Heights

The trim tab may be above the surface of the water when the outboard is trimmed out. Steering effort might increase. Lower the trim setting to submerge the trim tab and to reduce steering effort.

Dual Standard Rotation Outboards

Move both trim tabs equally and in the same direction.

Dual Outboards, One Counter and One Standard Rotation

Set both trim tabs to the center position.
Dual-Outboard Alignment

Dual outboards must be connected with a tie bar and adjusted to align the outboards for correct water flow to the gearcases and propellers.

Incorrect outboard alignment could cause one or more of the following:
• Propeller ventilation
• Reduction of top speed
• Improper boat tracking
• Engine overheat and powerhead damage

Follow the instructions provided by the tie bar manufacturer for tie bar installation and adjustment.

Measure Alignment

The “toe-in” (gearcase leading edges closer together than propeller shaft centers) or “toe-out” (gearcase leading edges farther apart than propeller shaft centers) is determined as follows:
• Position outboards straight with the anti-ventilation plates parallel with the bottom of the boat.
• Measure between propeller shaft centers.
• Measure between leading edges of gearcase.

Alignment Adjustment

Various boat/motor combinations respond differently to dual-outboard alignments. Each application must be thoroughly tested until the ideal combination of performance, steering, and cooling is found.

A common practice is to set-up the outboards parallel, or with a small amount of “toe-out,” and adjust inward until best results are achieved.
• A typical set-up with 2-stroke outboards mounted directly on the transom often runs best with a slight amount of “toe-in.”
• Outboards mounted behind the transom on motor brackets usually require “parallel” alignment or “toe-out.”
• Some 4-stroke outboards may perform best with a slight amount of “toe-out.”

Adjust the outboard alignments by adjusting tie bar. Follow the tie bar manufacturer’s adjustment procedures.

Check steering operation. Make sure that the steering system operates properly at various trim angles.

Confirm Alignment

To confirm proper alignment, perform the following steps:
• Water test the boat.
• Monitor the water pressure for both outboards.
• Run the boat at various trim angles.
• Perform steering maneuvers and vary the throttle settings.
• Monitor boat and outboard performance.

A sudden loss of water pressure or excessive propeller ventilation on one or both outboards may indicate a misalignment of the gearcases. Reset the outboard alignment and retest.
NOTES

Technician’s Notes

Related Documents

<table>
<thead>
<tr>
<th>Bulletins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
MAINTENANCE

TABLE OF CONTENTS

- **Inspection and Maintenance Schedule** .. 72
- **Anti-Corrosion Protection** ... 73
 - Sacrificial Anodes ... 73
 - Testing Procedure – Continuity .. 73
 - Metallic Component Protection ... 73
 - Exterior Finishes .. 73
- **Cooling System** ... 74
 - Flushing ... 74
 - Water Intake Screens .. 75
 - Additional Maintenance .. 75
- **Lubrication** ... 75
 - Steering System .. 75
 - Swivel Bracket and Trailering Bracket .. 76
 - Tilt Tube .. 76
 - Throttle and Shift Linkage .. 76
 - Propeller Shaft ... 77
 - Gearcase Lubricant .. 77
 - Trim and Tilt .. 78
- **Battery and Battery Connections** .. 78
- **Fuel and Oil Systems** .. 79
 - Fuel Filter .. 79
 - Oil Reservoir .. 79
 - Air Silencer ... 79
 - hoses and Connections .. 79
- **Spark Plugs** .. 80
- **Indexing** .. 80
- **Storage** ... 81
 - Fuel System Treatment .. 81
 - Internal Engine Treatment .. 81
 - Additional Recommendations ... 81
- **Pre-Season Service** ... 82
 - Outboard Mounting Bolts .. 82
 - Gearcase Lubricant .. 82
 - Battery(s) ... 82
 - Power Trim and Tilt .. 82
 - Operational Checks .. 82
- **Submerged Engines** ... 83
 - Engine Dropped Overboard (Not Running) .. 83
 - Engine Dropped Overboard (Running) ... 83
 - Engine Dropped Overboard (In Salt Water) ... 83
 - Prolonged Submersion (Fresh or Salt Water) .. 83
- **Notes** ... 84
Routine inspection and maintenance is necessary for all mechanized products. Periodic maintenance contributes to the product’s life span. The following chart provides guidelines for outboard inspection and maintenance to be performed by an authorized Dealer.

IMPORTANT: Outboards used for rental operations, commercial applications, or other high hour use applications require more frequent inspections and maintenance. Inspection and maintenance should be adjusted according to operating conditions and use; and environmental conditions.

<table>
<thead>
<tr>
<th>Description</th>
<th>Engine Care Product</th>
<th>Routine Inspection</th>
<th>Every 300 hours or every three years (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemCheck self-test and warning horn, check</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Emergency stop circuit and lanyard, check operation</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Controls, steering and tilting; check operation, lubricate</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Engine to transom mounting hardware, re-torque (40 ft. lbs.)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fasteners, tighten any loosened components</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Water intake screens, check condition</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Cooling system; check water pump indicator / water pressure</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Anticorrosion anodes, check condition</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Gearcase, check condition</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Propeller, check condition</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fuel and oil system components, inspect and repair leaks (2)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Check battery connections and condition</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Access EMM information, resolve any service codes</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Electrical and ignition wires, inspect for wear or chafing</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fuel filter, replace</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Gearcase lubricant, replace</td>
<td>A</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Spark plugs, inspect or replace (2)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Thermostats, inspect and check operation (2)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Grease fittings, lubricate (3)</td>
<td>C</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Power trim/tilt and fluid level, inspect</td>
<td>B</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Propeller shaft splines, inspect and lubricate (3)</td>
<td>C</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Starter pinion shaft, inspect and lubricate (3)</td>
<td>D</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Control cables, inspect and adjust</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Water pump, inspect / replace (more often if water pressure loss or overheating occurs)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

(1) Frequency for average recreational use. Commercial use, heavy use or use in salt, brackish or polluted water requires more frequent inspection and maintenance.

(2) Emission-related component

(3) Annually in salt water applications

A HPF XR Gearcase Lubricant
B Power Trim/Tilt Fluid
C Triple-Guard Grease
D Starter Lube Only P/N 337016
ANTI-CORROSION PROTECTION

Sacrificial Anodes
Galvanic corrosion occurs in fresh or salt water. Salt, brackish, and polluted water can accelerate corrosion. “Sacrificial” anodes are intended to protect the underwater metal components of the outboard from galvanic corrosion.

Outboards are equipped with three sacrificial anodes.

Visually inspect anodes and metal components below water level. Erosion of anodes is normal and indicates the anodes are functioning properly.

IMPORTANT: Anodes that are not eroding may indicate that the anodes are not properly grounded. Anodes and the mounting screws must be clean and tight for effective corrosion protection.

For best anode performance:
• Replace all anodes that have eroded or disintegrated to two-thirds of their original size.
• Do not paint or apply protective coatings to anodes or anode fasteners.
• Avoid using metal-based antifouling paint on the boat or outboard.

Testing Procedure – Continuity
Connect meter leads between engine ground and anode surface.

The multimeter should indicate little or no resistance. If resistance is high, check the following:
• Remove the anode and clean the area where the anode is installed.
• Clean the mounting screws.
• Install the anode and do the test again.

Metallic Component Protection
Protect metal components on outboards from corrosion. Use the following products to minimize corrosion.
• Anti-Corrosion Spray provides a heavy, waxy coating to protect components.
• “6 in 1” Multi-Purpose Lubricant provides a thin film of anti-corrosion protection.

Exterior Finishes
Maintain the outboard’s exterior finish to prevent corrosion and reduce oxidation.
• Use automotive wax to protect the outboard’s exterior finish from oxidation.
• Clean regularly using clean water and mild detergent soap.
• Touch-up damage to painted surfaces promptly.

The upper and lower motor covers use molded-in color technology. Surface scratches on the covers can be polished out with buffing compound.

Minor scratches can be repaired as follows:
• Sand the affected area with 800-grit sandpaper.
• Wet sand the area with 1200-grit sandpaper.
• Polish with a fine grade of buffing compound.
MAINTENANCE
COOLING SYSTEM

COOLING SYSTEM
Check the condition of cooling system components regularly. The outboard cooling system consists of:
• water intake screens;
• water pump;
• all internal water passages;
• thermostat;
• all external water hoses and fittings;
• vapor separator cooling passages and fittings;
• EMM cooling passages and fittings;
• overboard water pressure indicator.

Flushing
Flush the outboard with fresh water following each use in brackish, salt, or polluted water to minimize the accumulation of scale and silt deposits in cooling system passages.

The outboard can be flushed on the trailer or at dockside; running or not running.

IMPORTANT: The outboard must be located in a well ventilated area with appropriate ground drainage during the flushing procedures.

Keep water inlet pressure between 20 to 40 psi (140 to 275 kPa).

Flushing — Outboard Running

Refer to Propeller Hardware Installation on p. 65.

Place outboard in VERTICAL (DOWN) position in a well ventilated area.

Flushing — Outboard Running

Thread garden hose into flushing port.

Shift the outboard to NEUTRAL with the propeller removed.

Turn water supply on.

START outboard. Run it at IDLE only.

Shut OFF the outboard. Turn off water supply and remove garden hose.

Leave the outboard in VERTICAL (DOWN) position long enough for the powerhead to drain completely.

Reinstall propeller.

Flushing — Outboard Not Running
Outboard can be in VERTICAL (DOWN) or TILTED (UP) position.

Thread garden hose into flushing port.

Turn water supply ON.

Flush outboard for at least five minutes.

Turn off water supply and remove garden hose.

Position outboard in VERTICAL position (DOWN) long enough to allow the powerhead to drain completely.
Water Intake Screens

Inspect condition of water intake screens. Clean or replace as needed.

Confirm function of overboard water pressure indicator.

Additional Maintenance

- Confirm function of *SystemCheck* engine monitor.
- Check operation or visually inspect thermostat and pressure relief valve. Clean or replace as needed.
- Check that all water passages, hoses, and fittings for both the *EMM* and the vapor separator flow water freely.
- Replace water pump.

LUBRICATION

Steering System

![Warning]

WARNING

Failure to regrease as recommended could result in steering system corrosion. Corrosion can affect steering effort, making operator control difficult.

Grease the stainless steel output end of the steering cable with *Triple-Guard* grease.

Use an appropriate cleaning solvent to remove corrosion and dirt from output end of cable prior to coating it with grease. Make sure wiper nut is installed and not damaged.
MAINTENANCE

LUBRICATION

Swivel Bracket and Trailering Bracket

Lubricate the swivel bracket with *Triple-Guard* grease.

Apply grease until the grease begins to flow from the upper or lower swivel bracket areas.

Coat the pivot points of the trailering bracket with *Triple-Guard* grease.

Throttle and Shift Linkage

Disconnect the battery cables at the battery.

Remove clips and washers from throttle and shift lever pins. Carefully, remove throttle and shift cable casing guides from pins.

IMPORTANT: DO NOT disturb cable trunnion adjustments.

Shift remote control into FULL THROTTLE/REVERSE position to fully extend the plastic casing guides.

Apply *Triple-Guard* grease to:
- Cable attachment pins of both the throttle and shift levers.
- Brass inner casings of both the throttle and shift cables.

Shift the remote control to the NEUTRAL/IDLE position.

Install control cables on shift and throttle lever pins and secure with washers and clips.

Confirm proper throttle and shift function.

1. Grease fitting
2. Pivot points
3. Lower swivel bracket area

1. Tilt tube fittings

1. Attachment pins, throttle and shift cables
2. Brass inner casings, throttle and shift cables

1. Tilt tube fittings
Propeller Shaft
Debris from the water can become lodged around propeller shaft. Frequent inspection can minimize potential gearcase damage.

WARNING
When servicing the propeller, always shift the outboard to NEUTRAL, turn the key switch OFF, and disconnect the battery cables at the battery.

Remove propeller. Refer to Propeller Hardware Installation on p. 65.

Inspect bushing and blade surfaces. Replace damaged or worn propellers.

Clean propeller shaft. Inspect propeller shaft seals. Replace damaged or worn seals.

Apply Triple-Guard grease to entire length of propeller shaft prior to installing propeller.

Reinstall propeller hardware and propeller.

Gearcase Lubricant

IMPORTANT: Always check the fill level of the gearcase lubricant prior to removing drain/fill plug. A tie strap can be used to check lubricant level.

Examine drained lubricant for excessive metal fragments and for any indication of water in oil (cloudy or milky appearance). Lubricant that is black in color with a burnt odor indicates worn, overheated oil. Pressure and vacuum check gearcases with apparent leaks. Repair all leaks.

Refer to the INSPECTION AND MAINTENANCE SCHEDULE on p. 72 for service frequency and recommended lubricants.

Refer to LUBRICANT on p. 258 for complete gearcase lubricant filling procedures.

Refill the gearcase with HPF XR Gearcase Lubricant.

If HPF XR Gearcase Lubricant is not available, Hi-Vis gearcase lubricant can be used as an alternative; however, long term durability may be affected with continued use.

IMPORTANT: The recommended gear lubricants include special additives for marine applications. Do not use any automotive gear lubricants, 2-stroke or 4-stroke engine oil, or any other oil or grease for gearcase applications.
MAINTENANCE
BATTERY AND BATTERY CONNECTIONS

Trim and Tilt
Position outboard in FULL TILT (UP) position. Engage the tilt support bracket.

Inspect for fluid leaks. Repair all leaks.

Remove the fill cap and check fluid level. The fluid level must be even with bottom of the reservoir fill cap hole.

Add Biodegradable TNT Fluid, as needed, to bring level to the bottom of the fill plug threads.

Install the reservoir fill cap.

WARNING
Correct fluid level must be maintained to ensure operation of the impact protection built into the unit.

BATTERY AND BATTERY CONNECTIONS

Check battery connections frequently. Periodically remove battery to clean and service connections.

WARNING
Battery electrolyte is acidic—handle with care. If electrolyte contacts any part of the body, immediately flush with water and seek medical attention.

• Confirm that battery meets the minimum engine requirements.
• Connections must be clean and tight.
• Note all wiring connections prior to disassembly.

Disconnect battery negative (−) cable first and the battery positive (+) cable last.

Clean all terminals, battery posts, and connectors with a solution of baking soda and water. Use a wire brush or battery terminal tool to remove corrosion buildup. Rinse and clean all surfaces.

Reinstall battery and tighten connections securely. Refer to Battery Installation on p. 34.

IMPORTANT: DO NOT secure battery cables with wing nuts.

Coat all connections with Triple-Guard grease and insulate to prevent shorts or spark arcing.

WARNING
Keep battery connections clean, tight, and insulated to prevent their shorting or arcing and causing an explosion. If the battery mounting system does not cover the connections, install covers.
FUEL AND OIL SYSTEMS

Routine replacement of filters reduces the possibility of foreign material restricting the incoming fuel supplies.

Replacement filter elements are available through Evinrude/Johnson Genuine Parts.

Fuel Filter

Evinrude E-TEC outboards are equipped with an in line fuel filter.

![Fuel Filter](image)

1. Fuel filter

Oil Reservoir

Perform visual inspections to identify oiling system leaks. Make certain the oil tank is filled and oil supply is not contaminated.

Air Silencer

The air silencer on Evinrude outboards minimizes audible noise related to air flow into the engine.

![Air Silencer](image)

Routine cleaning of the air silencer is recommended to remove any accumulation of debris.

Hoses and Connections

Check condition of all hoses and connections related to both the fuel and oil systems.

- Visually inspect all components.
- Observe all clamps, hoses, and connections while outboard is running.
- Replace all damaged components.
- Repair all leaks.

WARNING

Failure to check for fuel leakage could allow a leak to go undetected, resulting in fire or explosion.
SPARK PLUGS

Spark plugs should be removed and examined periodically. Replace worn, fouled or damaged spark plugs.

Use only recommended spark plugs with the correct gap setting.

<table>
<thead>
<tr>
<th>Spark Plug, Champion</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC12PEPB @ 0.030 ± 0.003 in. (0.76 mm)</td>
</tr>
</tbody>
</table>

- Remove spark plugs and inspect condition.
- Set spark plug gap on new, replacement spark plugs.
- Mark spark plugs for ground electrode orientation.
- Apply Electrical Grease to the ribbed portion of the spark plug ceramic and to the opening of the spark plug cover to prevent corrosion.
- Install spark plugs using “indexing” procedure.

Indexing

Spark plug indexing positions the ground electrode of the spark plug opposite the fuel injector nozzle.

Put an ink mark on the ceramic of the spark plug that is in line with the OPEN side of the ground electrode. This mark will be used to orient the spark plug with the OPEN side of the ground electrode facing the fuel injector.

Apply Triple-Guard grease to the gasket surface of the spark plugs. Install all spark plugs and tighten them to a torque of 15 ft. lbs. (20 N·m).

If the mark is in unshaded area do not tighten anymore.

If the mark is in the shaded area, reset torque wrench to 30 ft. lbs. (41 N·m) and continue to turn until the mark is in the unshaded area.

If the mark does not reach the unshaded area before the torque of 30 ft. lbs. (41 N·m) is reached, the spark plug cannot be indexed for that cylinder. Try another spark plug and repeat the steps above.
STORAGE

IMPORTANT: DO NOT start outboard without a water supply to the outboard’s cooling system. Cooling system and/or powerhead damage could occur.

Fuel System Treatment
Stabilize the boat’s fuel supply with Evinrude/Johnson 2+4 Fuel Conditioner following the instructions on the container.

Internal Engine Treatment
Remove the propeller, attach garden hose to flushing port and turn on water.

Evinrude E-TEC models are designed to be self-winterizing using either of the following methods:

IMPORTANT: If outboard runs above FAST IDLE speed, turn outboard OFF immediately and perform the procedure again.

Remote Control Method
• Shift outboard into NEUTRAL position. Advance throttle control to 1/2 throttle (50%) position and start the outboard. The outboard will run at IDLE speed (SystemCheck lights will illuminate).
• After approximately 15 seconds (SystemCheck lights will go off) move throttle control to IDLE position (SystemCheck lights will illuminate again). Run the outboard with throttle control in IDLE position for another 15 seconds (SystemCheck lights will go off).
• Next, with outboard still in NEUTRAL, advance throttle control to FULL (100%) throttle position (SystemCheck lights will flash). The outboard will automatically go to FAST IDLE speed and begin internal fogging/lubrication.
• Allow outboard to run until it automatically shuts off (approximately 60 seconds). Turn key switch to OFF position.

Software Control Method
Winterization can also be run using the Evinrude Diagnostics software program. With the outboard running, start the process at the Settings/Adjustments screen and follow the instructions.

After the outboard shuts itself off, turn key switch OFF, then detach garden hose.

IMPORTANT: When finished, leave the outboard in vertical position long enough to completely drain the powerhead.
Additional Recommendations

- Top off oil reservoir.
- Inspect the fuel filter. If there is debris in the fuel filter, it must be replaced.
- Replace gearcase lubricant.
- Remove and inspect propeller.
- Clean and grease propeller shaft.
- Blow water from gearcase speedometer pickup system (gearcase speedometer models only).
- Lubricate all grease fittings and linkages.
- Inspect outboard, steering system, and controls. Replace all damaged and worn components. (Refer to manufacturer’s and lubrication recommendations).
- Touch up painted surfaces as needed. Coat outer painted surfaces with automotive wax.
- Remove battery(s) from boat. Store in a cool, dry location. Periodically charge battery(s) while stored. (Refer to manufacturer’s maintenance recommendations when servicing batteries.)
- Store outboard in upright (vertical) position.
- Check for fuel leakage.

WARNING

Failure to check for fuel leakage could allow a leak to go undetected, resulting in fire or explosion.

PRE-SEASON SERVICE

If outboard was removed from boat for storage, make certain it has been reinstalled with factory specified hardware. Refer to the INSTALLATION AND PREDELIVERY section for proper set-up procedures.

Outboard Mounting Bolts

- Check and re-torque outboard mounting bolts and nuts to 40 ft. lbs. (54 N·m).

Gearcase Lubricant

- Check the lubricant level.
- Inspect gearcase for leaks. If leak is apparent, pressure and vacuum test gearcase.
- Repair gearcase as needed.

Battery(s)

- Replace batteries that cannot be charged.

Power Trim and Tilt

- Remove filler cap and check fluid level.
- Inspect the power trim and tilt unit for leaks. Repair as needed.

Operational Checks

- Steering system
- Remote controls
- SystemCheck gauge
- All other accessories and instrumentation

Check Oil Injection Tank

- Inspect the oil tank for leaks.

Check Fuel System

- Inspect entire fuel system for leaks prior to starting outboard.
- Repair all leaks.

Water Pump

- Confirm that a steady stream of water flows from overboard indicator.

WARNING

Failure to check for fuel leakage could allow a leak to go undetected, resulting in fire or explosion.
SUBMERGED ENGINES

Once an outboard has been submerged in fresh or salt water, it must be serviced within three (3) hours of recovery. Immediate service can minimize the corrosive affect that air has on the polished surfaces of the crankshaft, connecting rods, and internal powerhead bearings.

IMPORTANT: If outboard cannot be started or serviced immediately, it should be resubmerged in fresh water to avoid exposure to the atmosphere.

Engine Dropped Overboard (Not Running)

Disconnect the battery cables at the battery.

Rinse powerhead with clean water.

Remove spark plug leads and spark plugs.

Place outboard in horizontal position (cylinder heads down). Slowly rotate flywheel in a clockwise rotation to work all water out of powerhead.

IMPORTANT: If sand or silt may have entered the outboard, DO NOT attempt to start it. Disassemble and clean.

Disassemble all electrical connectors. Clean connectors and terminals, and treat with water displacing electrical spray. Apply *Electrical Grease* to terminals prior to reassembly. Coat all exposed solenoid terminals and engine grounds with *Black Neoprene Dip™*.

Clean and inspect all electrical components. Replace damaged or corroded components prior to returning the outboard to service. Electric starters should be disassembled, cleaned, flushed with clean water, and treated with water displacing electrical spray prior to reassembly.

Disconnect fuel supply hose from outboard. Drain and clean all fuel hoses, filters, and fuel tanks.

Drain and clean oil tank and oil injection hoses.

Refill fuel tank with fresh fuel and oil tank with recommended oil.

Prime fuel and oil systems. Refer to *FUEL AND OIL PRIMING* on p. 57. Make sure all oil injection hoses are clean and filled with oil.

Make sure high pressure fuel system does not contain water. Flush as needed.

Inject a small amount of outboard lubricant into spark plug holes and install new spark plugs. Refer to Spark Plug *Indexing* on p. 144.

Reinstall all removed or disconnected parts.

Use the *Evinrude* Diagnostics Software program to:

- Initiate Break-in.
- Check fuel pump operation.
- Check injector operation (fuel and oil).
- Check timing (once outboard is running at full operating temperature).

Run outboard below 1500 RPM for one-half hour.

Engine Dropped Overboard (Running)

Follow the same procedures as *Engine Dropped Overboard (Not Running)*. However, if there is any binding when the flywheel is rotated, it may indicate a bent connecting rod and no attempt should be made to start the outboard. Powerhead must be disassembled and serviced immediately.

Engine Dropped Overboard (In Salt Water)

Follow the same procedures used for *Engine Dropped Overboard (Not Running)* and *Engine Dropped Overboard (Running)*. Disassemble and clean outboards that have been submerged in salt water for prolonged periods of time. Clean or replace electrical components as necessary.

Prolonged Submersion (Fresh or Salt Water)

Outboards that have been dropped overboard and not recovered immediately, must be serviced within three hours of recovery. Follow the same procedures used for *Engine Dropped Overboard (Not Running)* and *Engine Dropped Overboard (Running)*.
NOTES

Technician’s Notes

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Related Documents

<table>
<thead>
<tr>
<th>Bulletins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
ENGINE MANAGEMENT MODULE (EMM)

TABLE OF CONTENTS

DESCRIPTION .. 86
 EMM FUNCTIONS ... 86
 EMM CONNECTIONS ... 86
SENSORS AND FUNCTIONS 87
 INTERNAL SENSORS ... 87
 EXTERNAL SENSORS .. 88
 INTERNAL FUNCTIONS ... 90
EMM INPUTS AND OUTPUTS DIAGRAM 91
S.A.F.E. WARNING SYSTEM 92
 ACTIVATION .. 92
 RECOVERY .. 92
SHUTDOWN MODE .. 92
EMM DIAGNOSTICS .. 93
 LED INDICATORS .. 93
 DIAGNOSTIC SOFTWARE PROGRAMS 94
 COMMUNICATION .. 94
 PROGRAM INFORMATION 95
 SERVICE CODES (FAULTS) 95
 STATIC TESTS .. 96
 DYNAMIC TESTS .. 97
 OIL CONTROL .. 98
 STARTER MODE (TILLER/REMOTE PROGRAMMING) 98
 TIMING VERIFICATION 98
 TPS CALIBRATION .. 99
 IDLE SPEED .. 99
 FUEL INJECTOR SERVICING 99
 FUEL CONTROL ADJUSTMENT 100
REPORTS .. 100
 SOFTWARE REPLACEMENT 101
 EMM TRANSFER ... 101
SYSTEMCHECK ENGINE MONITOR 101
 SYSTEM SELF-TEST .. 102
 SERVICE MODE .. 102
 ENGINE RUNNING .. 102
DESCRIPTION

The Engine Management Module (EMM) is a water-cooled microprocessor. It controls numerous outboard systems including alternator output for the 12 V and 55 V circuits. The stator provides the EMM with voltage inputs that are essential to alternator output.

This section discusses the functions of the EMM and the various internal and external sensors. The process for retrieving service codes stored in the EMM during engine operation is also presented. The EMM Service Code Chart located at the back of this manual can be used to reference service code information.

EMM Functions

The EMM controls the following processes and functions:
- Fuel and ignition timing and duration
- Ignition system primary voltage output
- Fuel injector activation
- Oil injector pump activation
- Electric fuel pump control
- Alternator output; 55 V and 12 V
- Idle speed control
- RPM limiter
- Electrical circuit monitoring
- Service codes and warning system activation
- ROM verification, self-test
- Choke-less cold starting
- Output of “real-time” diagnostic data
- Tachometer signal
- RPM profile and engine hours
- Oiling ratios

EMM Connections

IMPORTANT: EMM connections and wiring must be clean and tight. Improper electrical connections can damage the EMM. DO NOT attempt to run the outboard with loose or disconnected wiring.

Make sure EMM connections are clean and tight.
- Engine wire harness to EMM connectors; J1-A, J1-B, J2
- Stator to EMM connections; one 6-pin AMP and J2 connector.

1. J1-A connector
2. J1-B connector
3. J2 connector
SENSORS AND FUNCTIONS

Sensor inputs and internal EMM controllers are used to control outboard operation. Use the Evinrude Diagnostics Software program to troubleshoot the sensors. Refer to Evinrude EMM Service Code Chart at back of manual for complete list of all engine fault codes.

Internal Sensors

Internal sensors are NOT serviceable. Reprogramming or replacement may be required to resolve EMM related issues.

EMM Temperature Sensor

Monitors the temperature of the fuel injector driver circuits.

If the EMM temperature exceeds 176°F (80°C) or the circuit fails, the EMM:

- Activates S.A.F.E.
- Stores a service code 25
- Initiates EMM NO OIL/OVERHEAT LED
- Initiates the SystemCheck TEMP/HOT light

If EMM temperature exceeds 212°F (100°C) or the circuit fails, the EMM:

- Activates SHUTDOWN
- Stores a service code 29
- Flashes EMM NO OIL/OVERHEAT LED
- Flashes SystemCheck TEMP/HOT light

IMPORTANT: The outboard will not restart until the engine cools and the EMM temperature returns to normal. Refer to SHUTDOWN MODE on p. 92.

If EMM temperature is less than -22°F (-30°C) or the circuit fails, the EMM:

- Stores a service code 24
- Initiates EMM NO OIL/OVERHEAT LED

Sensor indicates less than -71°F (-57.4°C) or greater than 314°F (156.9°C) a sensor circuit fault is detected and the EMM:

- Stores a service code 23
- Initiates EMM NO OIL/OVERHEAT LED

55 V Circuit Sensor

Monitors the EMM’s 55 V alternator circuit.

If system voltage exceeds 57 volts, the EMM:

- Activates S.A.F.E.
- Stores a service code 18
- Initiates EMM CHARGING FAULT LED
- Initiates the SystemCheck CHECK ENGINE light

If system voltage is below 45 volts with outboard running 500 to 1000 RPM or is below 52 volts with outboard running above 1000 RPM, the EMM:

- Activates S.A.F.E.
- Stores a service code 17
- Initiates EMM CHARGING FAULT LED
- Initiates the SystemCheck CHECK ENGINE light

12 V Circuit Sensor

Monitors the EMM’s 12 V alternator circuit.

If battery voltage exceeds 15.5 volts, the EMM:

- Stores a service code 27
- Initiates EMM CHARGING FAULT LED

If battery voltage is below 12 volts with outboard running 500 to 2000 RPM OR is below 12.5 volts with outboard running above 2000 RPM, the EMM:

- Stores a service code 26
- Initiates EMM CHARGING FAULT LED
ENGINE MANAGEMENT MODULE (EMM)
SENSORS AND FUNCTIONS

Barometric Pressure Sensor
Supplies the EMM with barometric pressure reading to compensate for changes in altitude and air density.

If the BP sensor is out of the expected range (below 13.3 KPa or above 119.0 KPa), or the sensor or circuit fails, the EMM:

Stores a service code 44
Initiates EMM SENSOR FAULT LED

If the BP sensor is below expected range (below 70 KPa), the EMM:

Stores a service code 45
Initiates EMM SENSOR FAULT LED

If the BP sensor is above expected range (above 105 KPa), the EMM:

Stores a service code 46
Initiates EMM SENSOR FAULT LED

External Sensors
The EMM provides a 5 V DC signal for sensor circuits. It monitors all sensor voltage inputs and compares them to predetermined acceptable ranges. Inputs that fall outside of the acceptable range initiate service codes.

Air Temperature Sensor
Monitors the air temperature at the throttle body. The air temperature sensor is a negative temperature coefficient (NTC) thermistor. As temperature increases, the resistance of the sensor decreases resulting in a lower voltage reading at the EMM. Temperature decreases result in a resistance increase and a higher voltage reading at the EMM.

If the AT sensor voltage is out of the expected range, or the sensor or circuit fails, the EMM:

Stores a service code 47
Initiates EMM SENSOR FAULT LED

Engine Temperature Sensor
Monitors temperature at the top of cylinder head. The sensor is a negative temperature coefficient thermistor (NTC). It provides engine temperature information to the EMM. The EMM uses this information to control engine operation and to activate the overheat warning system.

If engine temperature exceeds 212°F (100°C), the EMM:

Activates S.A.F.E.
Stores a service code 43
(engine temperature above expected range)
Initiates EMM NO OIL / OVERHEAT LED
Initiates SystemCheck TEMP/HOT light

If engine temperature exceeds 248°F (120°C), the EMM:

Activates SHUTDOWN
Stores a service code 31
Flashes EMM NO OIL / OVERHEAT LED
Flashes SystemCheck TEMP/HOT light

The outboard will not restart, after a temperature related SHUTDOWN, until the engine temperature returns to normal. Refer to SHUTDOWN MODE on p. 92.

If sensor values are below -15°F (-26.1°C) or above 331°F (166.5°C), the EMM:

Stores a service code 41
Initiates EMM SENSOR FAULT LED

If sensor values are below -4°F (-20°C), the EMM:

Stores a service code 42
(engine temperature below expected range)
Initiates EMM SENSOR FAULT LED

If engine does not reach operating temperature (104°F / 40°C below 2300 RPM), the EMM:

Stores a service code 58
(engine not reaching operating temperature)
Oil Pressure Switch
The oil pressure switch monitors oil pressure in the oil distribution manifold. The switch requires approximately 7 psi (48 kPa) (nominal) to close.

If the switch fails to indicate pressure in the oil distribution manifold, the EMM:

Activates S.A.F.E.
Stores a service code 38
Initiates EMM NO OIL / OVERHEAT LED
Initiates the SystemCheck NO OIL light

If the switch indicates constant pressure (no changes) in oil distribution manifold, the EMM:

Stores a service code 32
Initiates EMM SENSOR FAULT LED

Throttle Position Sensor
The throttle position sensor is a rotary potentiometer connected to the throttle plate shaft. The sensor receives a voltage signal from the EMM. As the throttle lever is rotated, the EMM receives a return voltage signal through a second wire. This signal increases as the TPS lever is advanced. A third wire provides a ground circuit back to the EMM.

Refer to TPS Calibration on p. 143.

If the TPS sensor or circuit fails (below 0.15 volts or above 4.95 volts), the EMM:

Stores a service code 12
Limits engine RPM to IDLE
Initiates EMM SENSOR FAULT LED
Initiates the SystemCheck CHECK ENGINE light

IMPORTANT: Once a TPS circuit fault has been detected, the outboard will not accelerate above idle speed. To reset, stop the outboard and correct the fault.

If the TPS sensor circuit indicates below 0.2 volts, the EMM:

Stores a service code 13
Initiates EMM SENSOR FAULT LED

If the TPS sensor circuit indicates above 4.85 volts, the EMM:

Stores a service code 14
Initiates EMM SENSOR FAULT LED

If the TPS sensor circuit indicates above 0.65 volts when the key is turned to the ON position, the EMM:

Initiates a service code 11

If the outboard is started, the code is stored.

If code 11 is present as both a Hard Fault and a Stored Fault, refer to Control Cable Adjustments on p. 54.

Crankshaft Position Sensor
The CPS is a magnetic device. It is mounted in the throttle body, adjacent to the flywheel.

Encoder rib spacing on the flywheel coincides with crankshaft position. As the encoder ribs of the flywheel pass the magnetic field of the CPS, an AC voltage signal is generated. The EMM uses this signal to identify crankshaft position and speed, generate a tachometer signal, and control fuel and ignition timing.

If the sensor is damaged or the signal is intermittent (10 instances), the EMM:

Stores a service code 16
Initiates EMM SENSOR FAULT LED

Approximate air gap between CPS and flywheel encoder ribs is .073 (1.85 mm).

Use the engine Monitor screen of the Evinrude Diagnostics Software program to check CPS operation. The outboard should indicate an RPM reading while cranking. If the CPS or its circuit fails, no RPM reading will be generated and the outboard cannot run.
Neutral Switch
The powerhead mounted neutral switch provides a ground signal for the EMM to indicate shift linkage position. This allows the EMM to control idle speed variations for NEUTRAL or IN GEAR. Additionally, tiller models use the switch for start in gear protection. Fuel and ignition functions are turned off on tiller models if the neutral switch is not activated.

If the switch is not functioning properly, the EMM:
- Stores a service code 19 (tiller models only)
- Initiates EMM SENSOR FAULT LED (Starting Mode only)

The engine Monitor screen of the diagnostic program displays switch position, NEUTRAL or IN GEAR. Make sure switch is operating properly.

Internal Functions

ROM Verification
The EMM runs through a self-test of programming every time it is turned ON. Service code 15 indicates a programming (software) issue. Reprogram the EMM with the correct software program to resolve.

Idle Controller
The idle controller reacts to engine operating conditions. Fuel and ignition timings are altered to maintain a specific RPM when engine is cold or warm. The controller is inactive when TPS is advanced from idle position.

RPM Limiter
This feature of EMM programming prevents engine damage due to excessive RPM. At 6250 RPM, fuel and ignition to the cylinders is shut off. Normal engine operation resumes when engine RPM returns to the specified range.

Neutral RPM Limiter
This feature of EMM programming prevents engine damage due to excessive RPM if accelerated in NEUTRAL. Neutral engine speed is limited to 1800 RPM.

Shutdown, Code 57
This feature of EMM programming monitors engine operation for abnormally high RPM with a low TPS position. If this condition is detected, the EMM:
- Activates SHUTDOWN
- Stores a service code 57
- Flashes EMM SENSOR FAULT LED
- Flashes SystemCheck CHECK ENGINE light

IMPORTANT: The outboard will not restart until the service code is cleared. Refer to SHUTDOWN MODE on p. 92.

Fault Codes
Refer to Evinrude EMM Service Code Chart at back of manual for complete list of all engine fault codes.
EMM INPUTS AND OUTPUTS DIAGRAM

1. Engine Management Module (EMM)
2. Battery (12 volt)
3. Stator
4. Crankshaft Position Sensor (CPS)
5. Throttle Position Sensor (TPS)
6. Neutral Switch
7. Air Temperature Sensor (AT)
8. Oil Pressure Switch (component of 11)
9. Engine Temperature Sensor
10. Fuel Pump (high pressure)
11. Oil Injection Pump and Manifold
12. Ignition Coil
13. Fuel Injector
14. Tachometer/SystemCheck Gauge
15. Diagnostic Connector
16. LED Indicators
S.A.F.E. WARNING SYSTEM

The EMM activates S.A.F.E. (Speed Adjusting Failsafe Electronics) and the dash-mounted SystemCheck gauge and horn to alert the operator of abnormal operating conditions and to prevent engine damage that could result from:

- Loss of oil flow
- Engine overheat
- Excessive EMM temperature
- Excessive or reduced alternator output

IMPORTANT: The LOW Oil sender is not monitored by the EMM. This sender connects directly to the SystemCheck gauge.

Activation

When a sensor or switch provides the EMM with a specific fault signal, it responds by interrupting fuel injector and ignition operation. This results in a gradual reduction in engine RPM until the engine speed reaches 1200 RPM. The warning horn sounds and the appropriate SystemCheck light turns on. As long as S.A.F.E. is activated, the engine will run normally below 1200 RPM. Above 1200 RPM, the engine will vibrate excessively.

Conditions that initiate S.A.F.E.

<table>
<thead>
<tr>
<th>Code</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Alternator 55 V below expected range</td>
</tr>
<tr>
<td>18</td>
<td>Alternator 55 V above expected range</td>
</tr>
<tr>
<td>25</td>
<td>EMM temperature above expected range</td>
</tr>
<tr>
<td>34</td>
<td>Oil injector open circuit</td>
</tr>
<tr>
<td>38</td>
<td>No oil pressure feedback</td>
</tr>
<tr>
<td>43</td>
<td>Engine temperature sensor above expected range</td>
</tr>
</tbody>
</table>

Recovery

The engine will operate in S.A.F.E. as long as the fault condition exists. To recover from S.A.F.E., two conditions must be satisfied: sensor or switch parameters must be back within limits; and engine RPM must be reduced to idle. The system will immediately recover and engine operation will return to normal.

SHUTDOWN MODE

Outboard “shutdown” will occur if specific faults are detected by the EMM.

Conditions that initiate shutdown

<table>
<thead>
<tr>
<th>Code</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Excessive EMM temperature</td>
</tr>
<tr>
<td>31</td>
<td>Excessive engine temperature</td>
</tr>
<tr>
<td>33</td>
<td>Excessive no oil condition</td>
</tr>
<tr>
<td>57</td>
<td>High RPM with low TPS setting</td>
</tr>
</tbody>
</table>

To recover from shutdown mode, the EMM must not detect the related fault at start-up.

IMPORTANT: Shutdown related to code 57 requires the removal of the stored service code. Use the diagnostic software program to erase a code 57.

Code 57 occurs when the EMM detects abnormally high RPM relative to the TPS position. This condition could be caused by uncontrolled fuel entering the combustion cycle. Before removing the code and STARTING the outboard, seek out and repair the cause.

- Perform Fuel System Pressure Test on p. 165. Seek out possible external fuel leakage that could allow fuel and/or vapor to enter the combustion cycle through the air intake (air silencer).
- Seek out possible internal fuel leakage from a leaking injector and/or vapor separator vent hose.
EMM DIAGNOSTICS

LED Indicators

The EMM has LED indicators located next to the electrical connectors that provide information related to various electrical circuits.

Starting Mode

“Starting mode” occurs from EMM power ON until outboard is running for 2 seconds.

LED 1 – Stator signal 30 V or higher, “CHARGING OKAY.” For NO LIGHT, investigate possible fault codes: 17, 18, 26, 27.

LED 2 – Crankshaft position sensor output, EMM powered (ON), “CRANK POSITION OKAY.” For NO LIGHT, investigate possible fault code 16.

LED 3 – Sensor circuits (5 V), “SENSORS OKAY.” For NO LIGHT, investigate possible fault codes: 12, 13, 19, 24, 16, 19, 32, 41, 42, 44, 45, 46, 47, 48, 49, 58.

For FLASHING LIGHT ON, investigate code 57 (High RPM with low TPS setting)

LED 4 – Lanyard/Stop circuit not grounded, “LAN-YARD/STOP OKAY.”

For NO LIGHT, repair grounded stop circuit.

For FLASHING LIGHT ON, investigate possible fault code 29 (engine shutdown, EMM overheat), code 31 (engine shutdown, engine overheat) or code 33 (engine shutdown, excessive no oil condition).

Running Mode

LED 1 – Low charging output, “CHARGING FAULT.” For LIGHT ON, investigate possible fault codes:
- Code 17 – system voltage (55 V) below range
- Code 18 – system voltage (55 V) above range
- Code 26 – low battery (12 V) voltage
- Code 27 – high battery (12 V) voltage

LED 2 – Damaged injector circuit, ignition primary circuit, or fuel pump circuit, “INJECTOR/IGNITION FAULT.” For LIGHT ON, investigate possible fault codes:
- Code 51 – cylinder no. 1 injector circuit open
- Code 52 – cylinder no. 2 injector circuit open
- Code 53 – cylinder no. 3 injector circuit open
- Code 61 – cylinder no. 1 injector circuit short
- Code 62 – cylinder no. 2 injector circuit short
- Code 63 – cylinder no. 3 injector circuit short
- Code 81 – no. 1 ignition primary circuit open
- Code 82 – no. 2 ignition primary circuit open
- Code 83 – no. 3 ignition primary circuit open
- Code 91 – fuel pump circuit open
- Code 94 – fuel pump circuit short

LED 3 – Sensor circuits (5 V), “SENSOR FAULT.”
For LIGHT ON, investigate possible fault codes:
- Code 12 – TPS circuit fault
- Code 13 – TPS below expected range
- Code 14 – TPS above expected range
- Code 16 – CPS, intermittent loss of sync
- Code 32 – oil switch signifies constant pressure
- Code 41 – engine temp. sensor circuit fault
- Code 42 – engine temp. below expected range
- Code 44 – BP sensor circuit fault
- Code 45 – BP below expected range
- Code 46 – BP above expected range
- Code 47 – AT sensor circuit fault
- Code 48 – AT sensor below expected range
- Code 49 – AT sensor above expected range
- Code 58 – engine not reaching operating temp.
LED 4 – Engine overheat, EMM temperature or sensor, oil injection pump or sensor, “NO OIL / OVERHEAT.” For LIGHT ON, investigate possible fault codes:
- Code 23 – EMM temperature sensor circuit fault
- Code 24 – EMM temp. below expected range
- Code 25 – EMM temp. above expected range
- Code 34 – oil injection pump circuit open
- Code 38 – oil pressure feedback not detected
- Code 43 – engine temp. above expected range

Diagnostic Software Program

The EMM stores valuable information about the outboard and its running history. This information can be used for troubleshooting and for checking outboard parts information. Program information is accessed through Diagnostic Software running on a laptop computer, or a PDA, connected to the outboard.

<table>
<thead>
<tr>
<th>Personal Computer (PC) based software (Windows)</th>
<th>Evinrude Diagnostics Software, P/N 763724</th>
</tr>
</thead>
</table>

IMPORTANT: For software help, refer to “Help Info” in the Evinrude Diagnostics software, or to the PDA software User’s Guide.

Communication

Locate the diagnostic connector on the engine. Remove the cover and install the Diagnostic Interface Cable (P/N 437955).

![Diagram of diagnostic connector and cover]

1. Diagnostic connector
2. Cover

Connect the 9-pin connector of the interface cable directly to the computer’s serial port.

The EMM must turn ON before it will communicate with any outside device. On remote models, power is normally supplied to the EMM when the key switch is ON. Switched B+ (12 V) is supplied to the engine wire harness. Current enters the EMM at pin 10 (purple) of the EMM J1-B connector.
Program Information

Static Information
Refers to information viewed when the outboard is NOT running. This includes manufacturing information.

The outboard model and serial numbers displayed on the Identity screen must match the identification label on the outboard swivel bracket.

Dynamic Information
Refers to specific information viewed while the outboard is running. Dynamic information updates quickly and allows the viewer to monitor voltage changes. The displayed information can be used for troubleshooting and checking outboard information.

Service Codes (Faults)
Service codes are fault conditions the EMM has identified. A service code may be stored as a result of some unidentified problem or condition. If no codes are displayed, the engine has no stored service codes.

Stored Faults
A stored service code represents a previous event or condition. Service codes are stored if they occur while the outboard is running.

The Stored Faults screen of the diagnostic program shows the code number, the number of
ENGINE MANAGEMENT MODULE (EMM)
EMM DIAGNOSTICS

times the event occurred, operating hours of first and last occurrence.

Hard Faults
A hard fault is a code that currently exists. Hard faults become stored faults only if the outboard is running.

Persistent Faults
The Persistent Faults screen provides a history of all previously stored codes, including code number, the number of times the event occurred, and operating hours of the last occurrence.

Persistent faults cannot be erased.

Static Tests
Static Tests perform diagnostic testing of specified components.

Ignition Test
Use the diagnostic software to test each ignition circuit. Refer to Static Spark Test on p. 116.

Check each circuit for continuity between the EMM and individual coil. Check the resistance of the ignition coil windings. Refer to Ignition Coil Tests on p. 128.

Fuel Test
Use the diagnostic software to test each fuel injector. The injector should make an audible click. Make sure the injector being monitored is wired correctly. If the injector activates, the EMM and injector circuits are not at fault. If the fuel injector(s) will not fire during the diagnostic tests, check the continuity of the injector circuit. Refer to Fuel Injector Resistance Test on p. 164.
Oil Injector
Use the diagnostic software to test the oil injection pump electrical circuit. Monitor the voltage at pin 2 (blue wire) of oil tank connector. Voltage should drop while the static test is active.

IMPORTANT: Oil injection pump will not activate on 12 V. Use voltmeter to check circuit voltage.

Fuel Pump
Use the diagnostic software to test the fuel pump. Make sure the pump is wired correctly. If the pump activates, the EMM and fuel pump circuit are not at fault. If the pump does not run during the static test, check voltage and continuity of pump circuit. Refer to Circulation Pump Resistance Test on p. 166. Fuel pump resistance is approximately 2 to 3 Ω.

Oil Fault
This test is used to simulate an oil pressure switch circuit malfunction and is used to check the “NO OIL” circuit of the SystemCheck gauge.

Overheat
This test is used to simulate an overheat situation and is used to check the “ENG TEMP” or “HOT” circuit of the SystemCheck gauge.

Check Engine
This test is used to check the “CHECK ENGINE” circuit of the SystemCheck gauge.

Tachometer
This test is used to check operation of the tachometer circuit.

Dynamic Tests
Dynamic tests are performed with the outboard running.

Fuel Test
The Fuel Test is performed with the outboard running (600 RPM minimum). This test momentarily disables one fuel injector circuit. By dropping one cylinder, RPM and running quality changes can be observed. Refer to Dynamic Tests on p. 110.

Ignition Test
The Ignition Test is performed with the outboard running (600 RPM minimum). This test momentarily disables the ignition circuit to one cylinder. By dropping one cylinder, RPM and running quality changes can be observed. Refer to Dynamic Tests on p. 110.

Prime Oil
This test is used to cycle the oil injection pump for priming the oiling system. Perform this test with outboard running to activate oil injection pump.
Oil Control

Oil Injection Ratio
(Used with XD100 oil only)

Evinrude E-TEC outboards can be programmed to run a reduced oiling rate. This feature should only be used with Evinrude/Johnson XD100 oil.

CAUTION

Running an Evinrude E-TEC outboard on other grades of oil while set to the XD100 oil ratio will result in increased engine wear and shortened outboard life.

Powerhead Break-In

Use the diagnostic software to initiate break-in oiling. Break-in is a predetermined oiling program that runs for two hours of outboard operation, above 2000 RPM.

IMPORTANT: Initiate Break-in programming for rebuilt powerheads.

Starter Mode (Tiller/Remote Programming)

This feature provides specific programming related to neutral switch operation. Tiller conversion kit installation requires programming of the EMM. Tiller operated models must be set to “TILLER.”

Timing Verification

Use the Ignition Timing screen of the diagnostic software to check and adjust EMM timing. EMM timing must be synchronized to crankshaft position. Refer to TIMING ADJUSTMENTS on p. 142.
Perform timing verification after any of the following procedures:
- Powerhead replacement
- Crankshaft replacement
- Flywheel removal or replacement
- CPS replacement
- EMM replacement
- EMM software replacement

IMPORTANT: Make sure the timing pointer is set and the outboard reaches operating temperature before timing verification is performed.

TPS Calibration

Use the diagnostic software Settings screen to tell the EMM what the throttle position sensor voltage level is when the throttle plates begin to open.

Refer to **TPS Calibration** on p. 143.

Idle Speed

Use Idle Adjust of the diagnostic software to increase or decrease the IN GEAR IDLE speed. This “Idle Offset” can be set for approximately 600 to 1000 RPM. The usable scale of this function is -250 to 100. Once “Idle Offset” is changed, the EMM will continue to control engine operation normally. Engine idle speed is not fixed. This idle speed adjustment offsets (increases or decreases) the basic EMM programming and will not set an absolute fixed speed.

Fuel Injector Servicing

All fuel injectors are “compensated” and require software programming. DO NOT install an injector without updating the compensation software.

To install a service injector, click the “Replace” button on the Injector Coefficients screen and select the file for the replacement injector. Refer to Fuel Injector Installation on p. 172.
Fuel Control Adjustment

The purpose of this feature is to help troubleshoot cylinder combustion. The Evinrude Diagnostics Software program allows temporary adjustments to the fuel flow characteristics of the injectors. This feature should not be used by itself to identify a faulty injector. Adjustment can be made before the outboard is started or while it is running. Factory fuel flow settings are restored when the key switch is returned to the OFF position.

Reports

Engine reports provide service records and can be used to document the running history of an outboard. Reviewing this information can help identify or resolve some service issues.

Clicking the print button in several windows of the diagnostic software allows the user to print engine data, or to export the information to a variety of computer file types.
Software Replacement

Software programs or “maps” are downloaded into the EMM prior to factory testing of the outboard. Periodically, a new map may be available to enhance the operation of an outboard. Refer to the installation instructions provided with the program.

IMPORTANT: Software replacement requires the use of “Bootstrap” Tool, P/N 586551.

EMM Transfer

EMM Transfer is a feature that allows EMM replacement. Use the diagnostic software program and follow the “help info” instructions provided in the program.

IMPORTANT: Whenever the EMM is replaced, timing verification must be performed. Refer to *Timing Verification* on p. 143.

SystemCheck ENGINE MONITOR

The *SystemCheck* engine monitor warns the operator of conditions that could damage the engine. The monitoring system consists of a dash-mounted gauge with four light emitting diodes (LED), a warning horn, sensors on the engine and oil tank, and related wiring. The system is compatible with all *Evinrude* outboards with the Modular Wiring System (MWS).

Gauges are available in two sizes: a 2-in. gauge with four LEDs or a 3 1/2-in. tachometer with LEDs.
ENGINE MANAGEMENT MODULE (EMM)
SYSTEMCHECK ENGINE MONITOR

The system logic is provided by a microprocessor in the gauge. The microprocessor connects to the EMM and the oil level sending unit of the oil tank.

Refer to the EMM Service Code Chart located at the back of this manual for a detailed list of service codes related to SystemCheck activation.

The EMM will activate the warning horn and the appropriate LED on the gauge as follows:

• NO OIL light indicates an oil delivery problem such as an empty oil tank or damaged oil system components.
• WATER TEMP or HOT light indicates an engine or EMM overheat condition.
• CHECK ENGINE light is used to indicate numerous fault conditions identified by EMM.

The oil tank sending unit will activate the warning horn and the LOW OIL LED of the gauge.

• LOW OIL light indicates the oil level in the oil tank is down to the reserve level (about 1/4 full).

System Self-Test

During engine start-up, pause with the key switch in the ON position. The horn self-tests by sounding a half-second beep. The gauge self-tests by turning the indicator lights on simultaneously, then off in sequence. This self-test routine might occur more than once during start up if battery voltage drops to 7 V. Self-test repeats if the key switch is turned OFF and ON.

Service Mode

SystemCheck goes into a service mode if the key is left ON after self-test (engine NOT running). All light circuits and sensors are active, but the horn is not. Grounding the appropriate light circuit wire will turn the light on, but the horn will not sound.

Engine Running

All warning light circuits are active when the engine is running. A microprocessor in the gauge monitors the tach circuit and activates the horn circuit when engine speed exceeds 500 RPM. The gauge will continue monitoring until the engine stops.

SystemCheck warnings activate the horn for 10 seconds and the appropriate gauge light for a minimum of 30 seconds. This allows adequate time for the operator to look at the gauge after hearing the horn. If the failure is momentary (e.g., oil moving in the tank), the light will remain ON for the full 30 seconds before going out. If the fault continues, the light remains ON until the key is turned OFF or the failure is corrected. The warning will reoccur at the next start-up if the problem is not corrected.
TABLE OF CONTENTS

ELECTRICAL CONNECTIONS ... 104
GROUND CIRCUITS ... 106
FUSE .. 106
EMM DIAGNOSTICS ... 107
 - LED INDICATORS .. 107
 - SOFTWARE PROGRAMS .. 107
DIAGNOSTIC PROCEDURES .. 108
 - SYMPTOMS ... 109
SPECIALIZED TEST PROCEDURES ... 110
 - DYNAMIC TESTS ... 110
 - TESTING WITH TIMING LIGHT ... 110
 - INDUCTIVE AMP METER TEST ... 111
 - ENGINE MONITORING INFORMATION 111
 - VOLTAGE TESTING ... 112
START CIRCUIT .. 112
 - ELECTRIC STARTER OPERATION ... 112
 - STARTER SOLENOID ACTIVATION .. 113
IGNITION AND ELECTRICAL CIRCUITS 114
 - IGNITION OUTPUT ... 115
 - WIRING INSPECTION .. 115
 - IGNITION VOLTAGE .. 115
 - SYSTEM VOLTAGE .. 116
 - STATIC SPARK TEST ... 116
 - RUNNING IGNITION TESTS .. 117
 - IGNITION PRIMARY CIRCUIT RESISTANCE TEST 118
 - CRANKSHAFT POSITION SENSOR (CPS) TEST 118
FUEL DELIVERY ... 119
 - MANIFOLD PRESSURE TEST ... 119
 - VAPOR SEPARATOR CHECKS ... 120
 - FUEL DELIVERY TO LIFT PUMP ... 120
FUEL INJECTOR OPERATION ... 120
 - NEUTRAL SWITCH ... 120
 - STATIC TESTS ... 120
 - DYNAMIC TESTS ... 121
NOTES .. 122
ELECTRICAL CONNECTIONS

Inspect wiring and electrical connections. Disassemble and clean all corroded connections. Replace damaged wiring, connectors, or terminals. Repair any shorted electrical circuits. Refer to wiring diagrams and reference charts to identify specific wiring details.

IMPORTANT: The key to effective troubleshooting is confirming the proper operation of each engine system. Causes of electrical failures may be difficult to isolate. Check the integrity of all connections, grounds, and wiring prior to replacing a suspect component.

Inspect the condition and positioning of the following components:
- Engine Management Module (EMM): wiring to EMM connectors and pins
- Stator: connections to EMM, wiring to connectors, and connector pins
- Engine wiring harness and connectors

Stator to EMM Connectors

J1-A Connector

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description of Circuit</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oil Pressure switch</td>
<td>Tan/White</td>
</tr>
<tr>
<td>2</td>
<td>Diagnostic connector</td>
<td>Red</td>
</tr>
<tr>
<td>3</td>
<td>Diagnostic connector</td>
<td>White</td>
</tr>
<tr>
<td>4</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Crankshaft position sensor (CPS)</td>
<td>Yellow</td>
</tr>
<tr>
<td>7</td>
<td>CPS ground (digital)</td>
<td>White</td>
</tr>
<tr>
<td>8</td>
<td>Bootstrap connector (programming)</td>
<td>Blk/Orange</td>
</tr>
<tr>
<td>9</td>
<td>Stop circuit</td>
<td>Blk/Yellow</td>
</tr>
<tr>
<td>10</td>
<td>Throttle position sensor (TPS) 5 V</td>
<td>Red</td>
</tr>
<tr>
<td>11</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12 V to EMM (fused)</td>
<td>Red/Purple</td>
</tr>
<tr>
<td>16</td>
<td>Tachometer</td>
<td>Gray</td>
</tr>
<tr>
<td>17</td>
<td>SystemCheck, CHECK ENGINE light</td>
<td>Tan/Orange</td>
</tr>
<tr>
<td>18</td>
<td>TPS analog ground</td>
<td>Green</td>
</tr>
<tr>
<td>19</td>
<td>Engine temperature sensor (water)</td>
<td>Pink/Black</td>
</tr>
<tr>
<td>20</td>
<td>Air temperature sensor</td>
<td>Pink/Blue</td>
</tr>
<tr>
<td>21</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>SystemCheck, NO OIL light</td>
<td>Tan/Yellow</td>
</tr>
<tr>
<td>25</td>
<td>SystemCheck WATER TEMP light</td>
<td>Tan</td>
</tr>
<tr>
<td>26</td>
<td>TPS ground (analog)</td>
<td>Black</td>
</tr>
<tr>
<td>27</td>
<td>Engine temp. sensor ground (analog)</td>
<td>Black</td>
</tr>
<tr>
<td>28</td>
<td>Air temperature sensor ground (analog)</td>
<td>Black</td>
</tr>
<tr>
<td>29</td>
<td>Neutral switch (shift linkage)</td>
<td>Yellow/Red</td>
</tr>
<tr>
<td>30</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>vacant</td>
<td></td>
</tr>
</tbody>
</table>

Pin No.

- 1. Stator winding (yellow) — Yellow/White
- 2. Stator winding (yellow) — Yellow
- 3. Stator winding (orange) — Orange/White
- 4. Stator winding (orange) — Orange
- 5. Stator winding (brown) — Brown/White
- 6. Stator winding (brown) — Brown
J1-B Connector

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description of Circuit</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Injector, cylinder 2</td>
<td>Purple</td>
</tr>
<tr>
<td>2</td>
<td>Injector, cylinder 3</td>
<td>Green</td>
</tr>
<tr>
<td>3</td>
<td>+55 V, in (ignition)</td>
<td>White/Red</td>
</tr>
<tr>
<td>4</td>
<td>+55 V, in (ignition)</td>
<td>White/Red</td>
</tr>
<tr>
<td>5</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ignition, cylinder 3</td>
<td>Orange/Green</td>
</tr>
<tr>
<td>8</td>
<td>Injector, cylinder 1</td>
<td>Blue</td>
</tr>
<tr>
<td>9</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Switched B+</td>
<td>Purple</td>
</tr>
<tr>
<td>11</td>
<td>Ignition ground</td>
<td>Black</td>
</tr>
<tr>
<td>12</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Injector ground</td>
<td>Black</td>
</tr>
<tr>
<td>15</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Ignition ground</td>
<td>Black</td>
</tr>
<tr>
<td>17</td>
<td>Ignition ground</td>
<td>Black</td>
</tr>
<tr>
<td>18</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Ignition, cylinder 2</td>
<td>Orange/Purple</td>
</tr>
<tr>
<td>20</td>
<td>Injector ground</td>
<td>Black</td>
</tr>
<tr>
<td>21</td>
<td>Injector ground</td>
<td>Black</td>
</tr>
<tr>
<td>22</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Oil solenoid</td>
<td>Blue</td>
</tr>
<tr>
<td>24</td>
<td>Ignition ground</td>
<td>Black</td>
</tr>
<tr>
<td>25</td>
<td>vacant</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Ignition, cylinder 1</td>
<td>Orange/Blue</td>
</tr>
</tbody>
</table>

J2 Connector

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description of Circuit</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stator winding, 1S</td>
<td>Yellow</td>
</tr>
<tr>
<td>2</td>
<td>Stator winding, 2S</td>
<td>Brown</td>
</tr>
<tr>
<td>3</td>
<td>Stator winding, 3S</td>
<td>Orange</td>
</tr>
<tr>
<td>4</td>
<td>Fuel pump control</td>
<td>Brown</td>
</tr>
<tr>
<td>5</td>
<td>Ground (fuel pump)</td>
<td>Black</td>
</tr>
<tr>
<td>6</td>
<td>Ground (power module)</td>
<td>Black</td>
</tr>
<tr>
<td>7</td>
<td>Ground (power module)</td>
<td>Black</td>
</tr>
<tr>
<td>8</td>
<td>Ground (injector power supply)</td>
<td>Black</td>
</tr>
<tr>
<td>9</td>
<td>Stator winding, 1F</td>
<td>Yellow/White</td>
</tr>
<tr>
<td>10</td>
<td>Stator winding, 2F</td>
<td>Brown/White</td>
</tr>
<tr>
<td>11</td>
<td>Stator winding, 3F</td>
<td>Orange/White</td>
</tr>
<tr>
<td>12</td>
<td>Fuel pump (flyback)</td>
<td>White/Red</td>
</tr>
<tr>
<td>13</td>
<td>+55 V, out</td>
<td>White/Red</td>
</tr>
<tr>
<td>14</td>
<td>+55 V, out</td>
<td>White/Red</td>
</tr>
<tr>
<td>15</td>
<td>+12 V out</td>
<td>Red</td>
</tr>
<tr>
<td>16</td>
<td>+12 V out</td>
<td>Red</td>
</tr>
</tbody>
</table>

Refer to **CONNECTOR SERVICING** on p. 149 for **AMP** connector servicing procedures.
GROUND CIRCUITS

All ground circuits are essential to optimum outboard performance. Make certain all ground connections are clean and tight. Refer to wiring diagrams to identify specific wiring details.

Test Procedure

Disconnect the battery cables at the battery.

Use an ohmmeter to check grounds at the appropriate pin locations of the EMM. Calibrate the ohmmeter on the “high” ohms scale.

Connect the ohmmeter red lead to the ground wire and the black meter lead main harness ground. Resistance readings for all ground circuits should be 0 Ω.

Main engine harness grounds from solenoid ground terminal screw to:
• Injector circuits: check continuity to terminal pins 14, 20, and 21 of the EMM J1-B connector.
• Ignition circuit: check continuity to terminal pin 16 of the EMM J1-B connector.
• Power supply: check continuity to terminal pins 6, 7, and 8 of EMM J2 connector.
• Starter solenoid: check continuity at terminal B.
• Trim and Tilt module: check connection at main ground terminal (solenoid mounting screw).

Ignition grounds on lower coil mounting screw to:
• EMM ignition circuits: check continuity to terminals pins 11, 17, and 24 of the EMM J1-B connector.

FUSE

The engine harness 12 V (B+) circuit is protected by one automotive style 10 amp minifuse. The fuse is positioned in the flywheel cover on the port side of powerhead, next to the starter assembly.
EMM DIAGNOSTICS

Access EMM information using the EMM’s LED indicators and the Evinrude Diagnostics Software program.

EMM turned ON is verified through LED display or communication with diagnostic software.

To access EMM information using the diagnostic software, connect interface cable to diagnostic plug and turn key switch ON. Battery cables and battery must be connected to supply power to EMM.

LED Indicators

Activation of LED indicators on the EMM correspond to specific EMM circuits.

IMPORTANT: LED 1 is top (HIGHEST) LED and LED 4 is bottom (LOWEST) LED.

Starting Mode

Light ON indicates system is functioning properly.
- LED 1 – Light ON, Stator signal 30 V or higher, “CHARGING OKAY”
- LED 2 – Light ON, CPS output, “CRANK POSITION OKAY”
- LED 3 – Light ON, Sensor/5 V circuits, “SENSORS OKAY”
- LED 4 – Light ON, Lanyard/Stop circuit not grounded, “LANYARD/STOP OKAY”

Refer to EMM DIAGNOSTICS on p. 93 for additional diagnostic information.

Running Mode

Light ON indicates system is MALFUNCTIONING.
- LED 1 – Light ON, Low charging output, less than 30 V, “CHARGING FAULT”
- LED 2 – Light ON, Injector or ignition circuit malfunction, “INJECTOR/IGNITION FAULT”
- LED 3 – Light ON, Sensor/5 V circuits, “SENSORS FAULT”
- LED 4 – Light ON, “NO OIL /OVERHEAT FAULT”

Refer to EMM DIAGNOSTICS on p. 93 for additional diagnostic information.

Software Programs

The Evinrude Diagnostics Software program can be used to communicate with the EMM. Communication also requires a 12 V supply to power up the EMM.

Refer to EMM DIAGNOSTICS on p. 93 for additional diagnostic information. Identify and resolve all problems related to Stored Faults/Codes. Note all Stored Faults/Codes prior to clearing the codes.
DIAGNOSTIC PROCEDURES

The key to effective troubleshooting is confirming the proper operation of each engine system. Causes of electrical failures may be difficult to isolate. Check the integrity of all connections, grounds, and wiring prior to replacing a suspect component. Refer to GROUND CIRCUITS on p. 106.

Observe and run the outboard prior to performing any unnecessary procedures. Initial inspection should include the following:

- Observe the outboard and confirm the actual symptoms. Refer to TROUBLE CHECK CHART at the end of this manual.
- Inspect spark plugs for indication of wear, oil fouling, or damage. A rich or lean running condition or evidence of internal engine damage could be identified by the appearance of the spark plugs.
- Make sure the outboard can be turned over easily. There should not be any mechanical binding.
- Check the Evinrude Diagnostics Software program Profiles screen, History screen, and Persistent Faults screens for evidence of prior abnormal operation. Refer to Diagnostic Software Program on p. 94.
Symptoms

Outboard will not crank, starter does not operate (electric start models):
• Check condition of battery and cables (main battery switch and cables). Make sure battery cables are not reversed.
• Confirm that B+ is present at “A” terminal (yellow/red wire) of starter solenoid with key switch in the START position.
• Proceed to START CIRCUIT on p. 112. Repair starter or start circuit as needed.

Outboard cranks, will not start:
• Use LED indicators of EMM for initial diagnostic information.
• Perform the Static Spark Test using the Evinrude Diagnostics Software program. Refer to IGNITION OUTPUT on p. 115.

Results:
Steady spark on all cylinders and proper output voltage on all ignition primary circuits:
• Check operation of all fuel injectors. Refer to FUEL COMPONENT TESTS on p. 164.
• Check fuel quality and that fuel is present at injectors.
• Refer to FUEL COMPONENT TESTS on p. 164 for fuel system pressure tests.

No spark on one or more cylinders:
• Note cylinder with no ignition output. Refer to IGNITION OUTPUT on p. 115.
• Monitor cranking RPM using the diagnostic program (300 RPM minimum).
• Check CPS operation (verify RPM reading.)
• Perform ignition coil resistance test(s). Refer to Ignition Coil Tests on p. 128.
• Use the Evinrude Diagnostics Software program to check ignition voltage and 55 V alternator/injector voltage.

Outboard runs:
• Use Evinrude Diagnostics Software program to perform Dynamic Tests. See Dynamic Tests on p. 121.
• Use the engine Monitor screen of the Evinrude Diagnostics Software program to observe circuit voltages. Refer to Engine Monitoring Information on p. 111.
• Use the diagnostic software Logging function to record engine data as a runability problem is occurring.
SPECIALIZED TEST PROCEDURES

The following tests are performed with the outboard running. Observe the operation of each electrical circuit. Look for inconsistencies between similar circuits and variations in cylinder performance.

Dynamic Tests

Use the diagnostic program to perform Dynamic Fuel and Ignition tests. These tests can be used to momentarily stop injector or ignition function for a selected cylinder while the outboard is running. This is an effective tool for checking the performance of each cylinder. Comparing one cylinder’s performance to others can frequently isolate a cylinder that is not operating properly.

IMPORTANT: DO NOT misinterpret tests run at IDLE. The idle speed controller in the EMM compensates to maintain a constant engine speed at IDLE. The Dynamic Tests screen of the diagnostic software includes a function to temporarily disable the idle controller.

Dynamic Tests can be used in conjunction with:
- A timing light to determine how other cylinders are affected by one cylinder being “dropped”; or
- A voltmeter to check voltage changes on electrical circuits.

Testing with Timing Light

WARNING

The electrical system presents a serious shock hazard. DO NOT handle primary or secondary ignition components while outboard is running or flywheel is turning.

An inductive timing light can be used to monitor ignition system output and the activation of fuel injectors and the oil injection pump. DO NOT clamp timing light pick-up on more than one wire at a time. Avoid erratic timing light reading by isolating pick-up from other wires. Self powered timing lights offer the convenience of no power cables and can help eliminate false signals.

DANGER

Contact with a rotating propeller is likely to result in serious injury or death. Assure the engine and prop area is clear of people and objects before starting engine or operating boat. Do not allow anyone near a propeller, even when the engine is off. Blades can be sharp and the propeller can continue to turn even after the engine is off. Remove propeller before servicing and when running the outboard on a flushing device.

DO NOT run the engine indoors or without adequate ventilation or permit exhaust fumes to accumulate in confined areas. Engine exhaust contains carbon monoxide which, if inhaled, can cause serious brain damage or death.

IMPORTANT: Test the outboard while the runability issue is present. Use the test procedures to identify inconsistencies in voltages and cylinder performance. Once a circuit has been identified as malfunctioning, a thorough inspection of all related wiring and connections must be performed. Check all voltage inputs and grounds; and perform resistance tests for all circuits prior to replacing any suspect components.
Ignition System Output

Use the timing light to monitor each spark plug lead for a consistent flash. The strobe should indicate one flash per revolution. Intermittent output or multiple flashes per revolution indicate improper ignition control.

Test ignition system grounds, primary circuit resistance, and EMM output voltages prior to replacing any components.

Fuel Injector/Oil Injection Pump Activation

Use the timing light to monitor each fuel injector or the oil injector pump lead(s). The strobe of the light indicates current in the circuit.

Test all grounds, circuit resistance(s), and circuit voltages prior to replacing EMM for faulty injector or pump control function.

Inductive Amp Meter Test

Use an inductive amp meter to monitor battery charging and current flow. Identifying erratic amperage in a circuit can be used to isolate a problem component.

Engine Monitoring Information

Use the Evinrude Diagnostics Software program to access the engine Monitor screen. This screen display provides engine information as it is occurring. Circuits are monitored for actual voltages or the condition of the circuit. Switch and sensor circuits, battery voltage (12 V), system voltage (55 V), and ignition voltage are continuously monitored.

IMPORTANT: The engine Monitor screen of the diagnostics program does not offer voltage information for all circuits.
Voltage Testing

Use a digital multimeter to check voltages. Identify all wiring and circuits prior to performing any voltage tests. Refer to Wiring Diagrams and descriptions of the various systems for specific information on each circuit.

55 V Circuits

All 55 V circuits are supplied 12 V when the key switch is ON, the EMM is powered up, and the outboard is not running.

Stator output supplies 55 VAC to the rectifier circuits of EMM once the outboard is running. The initial cranking voltage is 30 V or higher and increases to 55 V when outboard is running.

Ignition Circuit

Ignition voltage displayed on the engine Monitor screen of the diagnostic software will have approximately 0.1 V when the key switch is ON, the EMM is powered up, and the outboard is not running (electric start models). This voltage increases to 130 V to 220 V with the outboard running.

Perform voltage tests on all related circuits and compare voltage readings. Check voltages while Dynamic Tests are activated.

Identify erratic or lower than expected voltage readings. Determine if the voltage source or the wiring and connections of the circuit are the problem.

START CIRCUIT

The start circuit provides the required current to the starter motor and associated electrical circuits.

Electric Starter Operation

The starter must engage and turn the flywheel. A minimum cranking speed of 300 RPM must be achieved for the outboard to start.

Optimum starter performance is achieved by providing:

• Proper battery capacity (640CCA)
• Cables capable of transferring the amperage
• Low resistance battery and cable connections
• A solenoid capable of switching the current

These “high amperage” start circuit components provide the battery current required to crank and start the outboard (electric start models). Check the quality and condition of the following:

12 V Marine Battery

• Battery type, capacity, and condition
• Condition of battery posts, terminals, and connections
• Battery switch type, capacity, and connections

Refer to Battery Installation on p. 34 for battery, terminal, and cable requirements.

Starter Solenoid

• Starter solenoid and connections
• Starter solenoid ground, terminal “B”
• Starter cable (solenoid to starter motor)
• 12 V from solenoid terminal (POS) and engine harness (red wire) to 10 A fuse
Starter Motor and Drive Gear

- Starter motor operation, refer to ELECTRIC STARTER SERVICING on p. 145.
- Starter bendix operation.

Starter Solenoid Activation

Solenoid Wiring

The positive (B+) battery cable connects to the large front terminal of the starter solenoid. This terminal also provides the 12 V power supply to the engine harness (red wire) and the 10 A fuse. The red/purple wire from the fuse holder (10 A) provides 12 V to terminal “B” of key switch.

The negative (B–) battery cable connects to the ground stud on the starter housing.

Key Switch, START Position

Switches 12 V to terminal “S” of key switch and 12 V is applied to neutral safety switch.

Neutral Safety Switch (Remote Control)

Terminal “S” of the key switch provides 12 V (yellow/red) to the neutral safety switch (key switch in START position).

A depressed or activated neutral safety switch (in remote control) provides 12 V to the engine wire harness yellow/red wire (key switch in START position) and terminal “A” of starter solenoid.
IGNITION AND ELECTRICAL CIRCUITS

Following is a complete list of circuits required for ignition output:

Stop Circuit
• Outboard running: black/yellow wire NOT grounded (emergency stop switch lanyard in place).

Neutral Switch
• Powerhead mounted neutral switch provides a switched ground circuit to EMM. The circuit enables specialized control functions such as neutral start protection and RPM limiting in NEUTRAL.

Stator Output Voltage
• Provides EMM with A/C voltage.
• Outboard cranking: 30 V to EMM J2 connector.
• Outboard running: 55 V to EMM J2 connector

EMM
• Stator output to EMM provides voltage to EMM's internal power supply. EMM digital ground, ignition grounds, and injector grounds must be functional.

Crankshaft Position Sensor
• Provides EMM with input.
• Outboard cranking speed exceeds 300 RPM and a steady CPS signal is generated.

Alternator Output Voltage
• Alternator output from EMM (white/red) provides 55 V to the high pressure fuel pump, the oil injector pump, the fuel injectors, and the ignition module of EMM.

Capacitor
• Connected to 55 V circuit (white/red) to stabilize current on 55 V circuit.
• Negative terminal of capacitor must be grounded.

Ignition Power Supply to EMM
• 55 V to pins 3 and 4 of EMM J1-B connector.

Ignition Primary Voltage
• Output from EMM.
• EMM provides 200 V output to orange ignition primary wires. Minimum required voltage is 130 V.

Ignition Coil
• EMM provides input to primary winding of coil.
• Output from ignition coil secondary winding and high tension spark plug wire.
IGNITION OUTPUT

IGNITION OUTPUT

The electrical system presents a serious shock hazard. Allow outboard to sit for two minutes after running before handling capacitor or 55 V electrical components. Failure to handle capacitor properly can result in uncontrolled electrical discharge and possible electrical shock to humans. DO NOT handle primary or secondary ignition components while outboard is running or flywheel is turning.

Wiring Inspection

Visually inspect all wiring, connections, and grounds.

Use an ohmmeter to perform resistance tests on all ground circuits and connections. Ohmmeter readings should be approximately 0.0 Ω.

Check that main engine wire harness ground stud has continuity to the cylinder/crankcase.

Make sure battery is fully charged.

Clean or repair all ground circuits, wiring, and connections as needed. Refer to ELECTRICAL CONNECTIONS on p. 104.

Ignition Voltage

Use the Evinrude Diagnostics Software program to check ignition voltage to the primary ignition circuit(s). Check the EMM’s ignition voltage to the primary circuits of the ignition coils on the engine Monitor screen.

Results:

- “KEY ON” - approximately 5 V, Ignition voltage is GOOD, check voltage with outboard “running”. Refer to Static Spark Test on p. 116.
- “KEY ON” - no voltage, check system voltage to EMM. Refer to System Voltage on p. 116.
- “RUNNING” - 200 V ± 10, Ignition voltage is GOOD. Refer to Static Spark Test on p. 116.
- “RUNNING” - less than 200 V ± 10, check stator output to EMM. Refer to System Voltage on p. 116 and Stator Tests on p. 129.

Low or no voltage on EMM ignition circuit:

- Check system voltage (55 V) input to ignition circuit on pins 3 and 4 of EMM J1-B connector.

DANGER

The electrical system presents a serious shock hazard. Allow outboard to sit for two minutes after running before handling capacitor or 55 V electrical components. Failure to handle capacitor properly can result in uncontrolled electrical discharge and possible electrical shock to humans. DO NOT handle primary or secondary ignition components while outboard is running or flywheel is turning.

Consult engine Monitor Screen, Ignition Voltage
SYSTEM ANALYSIS
IGNITION OUTPUT

System Voltage
The ignition module of the EMM is powered by input voltage on pins 3 and 4 of EMM J1-B connector.

Use the engine Monitor screen of the Evinrude Diagnostics Software program to check system voltage.

Results:
• “KEY ON” - Approximately 1 V less than battery voltage, system voltage is GOOD.
• “KEY ON” - NO voltage, check 12 V power to EMM. Repair connection or wiring.
• “RUNNING” - 55 V ± 2, system voltage is GOOD.
• “RUNNING” - less than 55 V ± 2, check stator output to EMM. Repair connection or wiring. Possible faulty stator or EMM. Refer to Stator Tests on p. 129.

IMPORTANT: EMM must be ON for voltage to be present on the 55 V alternator output circuit. This output supplies all 55 V circuits on the engine, including the ignition module of the EMM. Power is normally supplied to the EMM when the key switch is ON. Switched B+ (12 V) is supplied to the engine wire harness. Voltage enters the EMM at pin 10 (purple) of the EMM J1-B connector.

Static Spark Test
Perform the static spark test using the Evinrude Diagnostics Software program and a timing light.

IMPORTANT: DO NOT use a spark checker tool with E-TEC models. Radio Frequency Interference (RFI) generated by the arcing current can cause erratic behavior in the EMM.

The outboard must NOT be running and the emergency stop switch lanyard must be installed.

Connect timing light pickup to primary and then secondary circuit of the ignition circuit being activated. Activate one circuit at a time and observe timing light strobe for consistent flash.
Results:
- GOOD spark control on all cylinders and outboard runs, refer to Running Ignition Tests on p. 117 and Dynamic Tests on p. 110.
- NO spark control on one or more cylinders, note cylinders. Refer to Ignition Primary Circuit Resistance Test on p. 118 and Ignition Coil Tests on p. 128.

Running Ignition Tests
The purpose of this test is to isolate ignition system malfunction. This test should be used in conjunction with other ignition system tests to identify component failures. This test provides limited information. Use the findings of this test to eliminate ignition system components. A thorough understanding of the outboard’s ignition system is required.

Monitor Voltage Outputs
Use the Evinrude Diagnostics Software program to monitor system voltage (55 V) and ignition voltage (200 V).
- Voltage readings at a specific speed (RPM) should be steady.

Monitor Ignition Output with Timing Light
Use a timing light to monitor the spark signal through each of the high tension spark plug wires.

Start outboard and observe the timing light’s strobe. Look for a consistent flash and only one flash per revolution. The strobe of the timing light should be consistent or the same for each cylinder’s ignition output.

IMPORTANT: Test on primary circuit if strobe from secondary circuit appears faulty.

Results:
Steady voltage and strobe:
- Inspect or replace spark plugs, check fuel system performance, and/or eliminate the possibility of internal engine damage.

Voltages are steady, engine misfires:
- Check CPS resistance, check ignition voltage while problem is occurring. Refer to Ignition Primary Circuit Resistance Test on p. 118 and Ignition Coil Tests on p. 128.

Voltages fluctuate, engine misfires:

IMPORTANT: If a running problem occurs at about 1200 RPM, the outboard may be in S.A.F.E. Refer to Conditions that initiate S.A.F.E. on p. 92.
Ignition Primary Circuit Resistance Test

Disconnect the battery cables at the battery.

Calibrate ohmmeter to low ohms scale.

With key switch OFF, remove the EMM J1-B connector and measure resistance of each primary circuit. Note resistance reading between each primary wire and ground. Refer to engine wiring diagram.

<table>
<thead>
<tr>
<th>Ignition Primary Circuit Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.090 ± 0.005 Ω</td>
</tr>
</tbody>
</table>

IMPORTANT: A reading of less than 2 ohms is acceptable. Make sure meter is calibrated to read 1 ohm or less.

Results:

Primary circuit resistance reading is higher than 5 Ω:

- Repair primary circuit wiring or coil grounds as needed and retest.
- Replace faulty coils or wiring.

Primary circuit resistance reading less than 5 Ω or within specification and EMM ignition output voltage is 130 V or higher:

- Refer to **Secondary Winding Resistance Test** on p. 128. Repair high tension spark plug lead or replace ignition coil and/or high tension spark plug lead assembly.

Crankshaft Position Sensor (CPS) Test

Use the Evinrude Diagnostics Software program to check RPM reading. An RPM display higher than zero indicates a CPS signal to the EMM. Cranking RPM is typically 200 RPM or higher.

Observe Engine RPM and Power ON Time display fields of the engine Monitor screen. “ON Time” should be continuous and should not reset unless the key switch is turned OFF or power to the EMM is interrupted.

Check CPS resistance (560 Ω ± 10%). Make certain ohmmeter is calibrated properly. Refer to **Crankshaft Position Sensor (CPS) Test** on p. 127.
FUEL DELIVERY

Refer to Relieving Fuel System Pressure on p. 168.

Use the Evinrude Diagnostics Software program to review service codes prior to troubleshooting. Correct all conditions related to service codes FIRST.

Inspect all fuel hoses, filters, and connections. Check quality of fuel supply.

Manifold Pressure Test

If the outboard runs, check pressure with the outboard running. Perform pressure tests outlined in Fuel Supply on p. 165.

If the outboard does not run, use the primer bulb to fill the vapor separator. Make sure circulation pump activates with outboard cranking.

The Fuel Pump test of the diagnostic program can be used to activate electric fuel pump.

Results:

Pressure test indicates 20 to 30 psi (138 to 207 kPa):
- Circulation pump output is good. Make sure fuel system pressure does not fall below 15 psi (103 kPa) after outboard (pump) is OFF for five minutes. Leakdown indicates a fuel system leak or leaking injector.

Low or no pressure, pump runs:
- Suspect damaged fuel pressure regulator in vapor separator or faulty circulation pump. Perform Pressure Regulator Test on p. 165.

Pump does not run:
- Check voltage at pin 1 of fuel pump connector. Voltage should be 12 V key ON, 55 V cranking or running.
- Check voltage at pin 2 of fuel pump connector. The EMM controls the fuel pump ground (brown wire). Use the fuel pump test of the diagnostic program to activate the ground control function of the EMM. Connect voltmeter positive lead to pin 2 and negative meter lead to ground. Activate Fuel Pump test or run outboard. Voltage reading should drop slightly as EMM connects the control circuit to ground.

Excessive pressure:
- Check for restricted pressure regulator in vapor separator or restricted fuel return manifold.

⚠️ WARNING ⚠️

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure.

Static Tests Screen
SYSTEM ANALYSIS

FUEL INJECTOR OPERATION

Vapor Separator Checks

Fuel Supply
The vapor separator must provide “solid” fuel to the fuel circulation pump. Make sure the vapor separator receives the proper fuel supply from the fuel lift pump.

Perform **Lift Pump Pressure Test** on p. 166.
- Use primer to check fuel movement through fuel lift pump.
- Outboard runs: Check pressure with outboard running.
- Outboard does not run: Check pressure with outboard cranking.

Venting
Monitor the vapor separator vent hose. No fuel or a trace of fuel is acceptable. Excessive fuel discharge indicates a vapor separator vent malfunction. Monitor vent for presence of fuel during testing. Temporarily install clear tubing for monitoring. Replace vapor separator if the venting of fuel is continuous.

Fuel Delivery to Lift Pump
Perform the **Lift Pump Vacuum Test** on p. 167. Make sure no restrictions or air leaks exist in the fuel supply hose or boat fuel system.

FUEL INJECTOR OPERATION

Neutral Switch
The powerhead mounted neutral switch provides a ground signal for the EMM to indicate shift linkage position. The engine Monitor screen of the diagnostic program provides a display which indicates switch position, NEUTRAL or IN GEAR. Make sure switch is operating properly. Refer to **Neutral Switch** on p. 90.

Static Tests
Perform the **Fuel Injector Static Test** using the diagnostic program. Static tests are performed with the outboard “static” or not running. Listen for an audible “click” from each injector when it is actuated.

IMPORTANT: Battery must be fully charged and connections must be clean and tight.

Results:
- No injectors actuate:
 - Use the diagnostic software to monitor 55 V output. Check individual injector circuits from EMM to injectors. Check alternator 55 V input to EMM. See **Stator Voltage Output Test** on p. 129.
- Some injectors actuate; some do not:
 - Make sure individual injector circuits and injectors are functional. See **Injectors** on p. 164.
- All injectors actuate:
 - Confirm fuel system pressure and fuel supply to injectors.
Dynamic Tests

Use the engine Monitor screen of the diagnostic software program to monitor outboard system voltage. Perform these tests while monitoring voltage. If voltage drops as RPM increases, check stator and charging system operation.

Run or crank outboard. Monitor the injector control wire for each injector with an inductive timing light. Make certain the inductive pickup is attached to only one wire. Flashes on the timing light indicate current in the circuit is being switched by the EMM. The Dynamic Tests screen allows fuel injectors or ignition to be turned off to a particular cylinder.

IMPORTANT: Some timing lights may not flash consistently at cranking speeds. Always check the orientation of the timing light pickup and the operation of the timing light to avoid needless part(s) replacement.

Results:

Steady light activation on all injector wires and consistent voltage readings:
- EMM injector control function is good.

Irregular or no light activation on some injector wires:
- Check the voltage on each circuit. Test the resistance of each injector circuit. Measure resistance between the injector connector and injector control wire at the EMM connector.
- Check battery cable connections.
- Make sure all grounds are clean and tight.
- Eliminate all other possibilities to isolate a faulty EMM.

No light activation on any injector wires (outboard cranks and starter turns flywheel):
- Confirm stator input (55 V circuit) to EMM, CPS operation, and all grounds and wiring connections. Possible open circuit(s), faulty CPS or EMM.

IMPORTANT: This test is operating injector on 12 V battery power. Injector activation should be carefully confirmed.
<table>
<thead>
<tr>
<th>Technician’s Notes</th>
<th>Related Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bulletins</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instruction Sheets</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL AND IGNITION

TABLE OF CONTENTS

SERVICE CHART .. 124
DASH CONNECTIONS, INSTRUMENT HARNESS 126
IGNITION SYSTEM TESTS .. 127
 SENSOR RESISTANCE TESTS 127
 IGNITION COIL TESTS .. 128
 STATOR TESTS ... 129
 CAPACITOR TEST .. 130
CHARGING SYSTEM TESTS ... 130
 12 V CHARGING CIRCUIT ... 130
 55 V ALTERNATOR CIRCUIT 131
SYSTEMCHECK CIRCUIT TESTS 132
 GAUGE SELF-TEST CHECK ... 132
 CHECK ENGINE CIRCUIT TEST 133
 WATER TEMP/ HOT CIRCUIT TEST 133
 LOW OIL CIRCUIT TEST .. 134
 NO OIL CIRCUIT .. 134
REMOTE CONTROL SWITCH TESTS 134
ELECTRIC STARTER TESTS .. 136
 STARTER SOLENOID TEST ... 136
 NO LOAD CURRENT DRAW TEST 137
TILT/TRIM RELAY TEST ... 138
 OPERATION .. 138
 TEST PROCEDURE .. 138
TACHOMETER CIRCUIT TESTS ... 139
FLYWHEEL SERVICING ... 140
 REMOVAL .. 140
 INSTALLATION ... 141
TIMING ADJUSTMENTS .. 142
 TIMING POINTER ... 142
 TIMING VERIFICATION .. 143
 TPS CALIBRATION .. 143
SPARK PLUGS .. 144
 INSPECTION .. 144
 INDEXING ... 144
ELECTRIC STARTER SERVICING 145
 REMOVAL .. 145
 DISASSEMBLY ... 145
 CLEANING AND INSPECTION 146
 ASSEMBLY .. 147
 INSTALLATION ... 148
CONNECTOR SERVICING ... 149
NOTES .. 154
SERVICE CHART

75 – 90 HP MODELS

5 to 8 in lbs. (.6 to .9 N·m)

100 to 115 ft. lbs. (136 to 156 N·m)

84 to 108 in lbs. (9.5 to 12.2 N·m)

168 to 192 in lbs. (19 to 21 N·m)

24 to 36 in lbs. (2.7 to 4 N·m)

IMPORTANT:
DO NOT lubricate TPS to throttle shaft surface

A: Triple-Guard Grease
B: Gasket Sealing Compound
C: Adhesive 847
D: Moly Lube
E: Red Ultra Lock
F: Blue Nut Lock
N: Starter Bendix Lube
T: Liquid Neoprene
ELECTRICAL AND IGNITION
SERVICE CHART

125

60 to 84 in. lbs. (6.8 to 9.5 N·m)

6 to 10 in. lbs. (0.8 to 1.1 N·m)

24 to 36 in. lbs. (2.7 to 4 N·m)

15 to 30 ft. lbs. (20.3 to 40.7 N·m)

30 to 42 in. lbs. (3.4 to 4.8 N·m)

60 to 84 in. lbs. (7 to 9.5 N·m)

24 to 36 in. lbs. (2.7 to 4 N·m)

7 to 10 in. lbs. (0.8 to 1.1 N·m)

60 to 84 in. lbs. (6.8 to 9.5 N·m)

F, T

A
Triple-Guard Grease

B
Gasket Sealing Compound

C
Adhesive 847

D
Moly Lube

E
Red Ultra Lock

F
Blue Nut Lock

J
Thermal Grease

T
Liquid Neoprene

X
Refer to Spark Plug Indexing on p. 144

002249
DASH CONNECTIONS, INSTRUMENT HARNESS

3-pin connector – Connect to trim switch located in the handle of the remote control or to trim switch mounted on the boat dash.

6-pin connector – Connect to a pre-wired remote control or to a dash-mounted key switch.

Black, purple, white/tan wires – Connect to the trim gauge.

8-pin connector – Connect to a 2 in. SystemCheck gauge or to a 3 1/2 in. SystemCheck tachometer.

2-pin connector – Must connect to the warning horn in all installations.

Black, purple, gray wires – Connect to a conventional tachometer when a SystemCheck tachometer is not used.
IGNITION SYSTEM TESTS

Sensor Resistance Tests
All sensor circuits are dependent on wiring and connections, EMM supplied current (5 V), and sensor resistance. The supplied current flows through the wiring circuit and sensor before returning to the appropriate circuit in the EMM.

IMPORTANT: Use the Evinrude Diagnostics Software program to monitor sensor circuit voltages or values.

Crankshaft Position Sensor (CPS) Test
Disconnect the battery cables at the battery. Use an ohmmeter to measure sensor resistance.

![CPS](002286)

Sensor Resistance

<table>
<thead>
<tr>
<th></th>
<th>560 Ω ± 10% @ 77°F (25°C)</th>
</tr>
</thead>
</table>

The CPS is mounted to throttle body housing and requires no adjustment. Air gap or clearance to flywheel is fixed at approximately 0.073 in. (1.85 mm). The acceptable clearance is 0.036 to 0.110 in. (1 to 2.8 mm).

Throttle Position Sensor (TPS) Test
Disconnect the battery cables at the battery. Remove the electrical connector from the TPS.

Use an ohmmeter to measure sensor resistance.

IMPORTANT: DO NOT lubricate TPS to throttle shaft surface.

STEP 1
Connect red meter lead to terminal “A” and black meter lead to terminal “B.”

Sensor Resistance (between “A” and “B”)

<table>
<thead>
<tr>
<th></th>
<th>> 3000 Ω @ 77°F (25°C)</th>
</tr>
</thead>
</table>

STEP 2
Connect red meter lead to terminal “A” and black meter lead to terminal “C.” Rotate the sensor lever through its range of travel. Resistance reading must change evenly as the sensor lever is moved.

STEP 3
Connect red meter lead on terminal “B” and black meter lead to terminal “C.” Rotate the sensor lever. Resistance reading must change evenly as the sensor lever is moved.

TPS voltage can be monitored using the diagnostic program. Use the engine Monitor screen to observe voltage while outboard is running. Voltage should change evenly as sensor lever is moved.
ELECTRICAL AND IGNITION
IGNITION SYSTEM TESTS

Engine Temperature Sensor Test
Use an ohmmeter to measure resistance.

<table>
<thead>
<tr>
<th>Engine Temperature Sensor Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000 to 11000 Ω @ 77°F (25°C)</td>
</tr>
</tbody>
</table>

Ignition Coil Tests

Primary Winding Resistance Test
Connect ohmmeter between coil primary terminal and clean engine ground.

<table>
<thead>
<tr>
<th>Ignition Coil Primary Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.090 ± .005 Ω @ 77°F (25°C)</td>
</tr>
</tbody>
</table>

IMPORTANT: A reading of less than 2 ohms is acceptable. Make sure meter is calibrated to read 1 ohm or less.

Air Temperature Sensor (AT) Test
Use an ohmmeter to measure resistance.

<table>
<thead>
<tr>
<th>AT Sensor Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000 to 11,000 Ω @ 77°F (25°C)</td>
</tr>
</tbody>
</table>

Secondary Winding Resistance Test
Connect ohmmeter between coil secondary terminal and coil primary terminal.

<table>
<thead>
<tr>
<th>Ignition Coil Secondary Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>301 ± 14 Ω @ 77°F (25°C)</td>
</tr>
</tbody>
</table>
Stator Tests
The stator consists of 3 windings (4 poles each) on a 5 inch diameter core and generates an output voltage of 55 VAC (1100 watts maximum). This voltage is converted by the *EMM* and used to provide 12 VDC for battery charging (3 to 5 A at 500 RPM and 25 A at WOT) and 55 VDC for fuel injector, fuel and oil pump operation. The ignition module of *EMM* is also powered by the 55 VDC output.

Stator Resistance Tests
Disconnect the battery cables at the battery. Use an ohmmeter to check resistance of stator windings.

STEP 1
Disconnect *EMM* J2 connector from *EMM*.

Calibrate ohmmeter to appropriate scale and connect meter leads to the following pins:
- Yellow/white and yellow (pins 9 and 1)
- Brown/white and brown (pins 10 and 2)
- Orange/white and orange (pins 11 and 3)

IMPORTANT: A reading of less than 2 ohms is acceptable. Make sure meter is calibrated to read 1 ohm or less.

Stator Winding Resistance Specification

<table>
<thead>
<tr>
<th>Winding</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow & Yellow / white</td>
<td>$0.670 \pm 0.020 \Omega$ @ 73°F (23°C)</td>
</tr>
<tr>
<td>Brown & Brown / white</td>
<td>$0.670 \pm 0.020 \Omega$ @ 73°F (23°C)</td>
</tr>
<tr>
<td>Orange & Orange / white</td>
<td>$0.670 \pm 0.020 \Omega$ @ 73°F (23°C)</td>
</tr>
</tbody>
</table>

STEP 2
To check for a grounded condition, connect one meter lead to ground wire and alternately connect the other meter lead to each stator wire. Meter should read no continuity. If meter reads continuity, replace stator due to grounded winding.

Stator Voltage Output Test
Use a voltmeter to check the stator output voltage. Set meter to read 55 VAC output.

WARNING
To prevent accidental starting of outboard, disconnect crankshaft position sensor (CPS).

Disconnect CPS.

Disconnect stator (6-pin) connector from the engine harness (6-pin) connector.

Connect Stator Test Adaptor tool, P/N 5005799, to stator connector.

Connect meter leads to connector leads 1 and 6.

With a fully charged battery, crank outboard (300 RPM minimum) and observe meter reading.

Stator Voltage Output
(Measured between terminals 1 and 6)

<table>
<thead>
<tr>
<th>Speed</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 RPM</td>
<td>30 VAC</td>
</tr>
<tr>
<td>400 RPM</td>
<td>40 VAC</td>
</tr>
<tr>
<td>Above 500 RPM</td>
<td>55 VAC</td>
</tr>
</tbody>
</table>

1. EMM J2 Connector 002462

1. Stator Test Adaptor 002396
Capacitor Test
The capacitor should charge when you use an ohmmeter on the high ohms scale with the proper polarity. The resistance will increase until it goes to (nearly) infinity. If the capacitor is shorted, then it will never charge. If it is open, the resistance will be infinite immediately and won't change. If the polarity of the probes is reversed, it will not charge properly either. Determine the polarity of your meter and mark it. Black is usually negative with VOMs, for example. Confirm with a marked diode. A low reading across a good diode indicates that the positive lead is on the anode (triangle) and negative lead is on the cathode (bar).

CHARGING SYSTEM TESTS
12 V Charging Circuit
To test the operation of the regulator in the EMM, you must be able to run the outboard continuously at approximately 5000 RPM, such as in a test tank or on a marine dynamometer.

The test consists of monitoring the system's response to a partially discharged battery. Use a variable load tester to discharge the battery.

IMPORTANT: The regulator requires battery voltage on the red wire to operate. Before proceeding, make sure battery voltage is at the connector red wire when key is ON.

Test Procedure
Disconnect the battery cables at the battery.

Use an inductive amp meter or connect a 0 to 40 A ammeter in series between the red wire of engine wire harness (alternator output from EMM) and the positive (B+) battery cable terminal of starter solenoid.

Fluke† model 334 or 336, Snap-On† model MT110 or EETA501, and various other amp meters should be available through local tool suppliers.

Reconnect the outboard's battery cables.
Following the manufacturer’s directions, connect the variable load tester (carbon pile) across the battery terminals. Stevens model LB-85 and Snap-on model MT540D are examples of testers available.

WARNING

Excessive battery discharge rates might overheat battery causing electrolyte gassing. This might create an explosive atmosphere. Always work in a well ventilated area.

Start the outboard and run it at approximately 5000 RPM. Use the variable load tester to draw the battery down at a rate equivalent to the stator’s full output.

- The ammeter should indicate nearly full output, Approximately 25 A @ 5000 RPM.

Decrease the battery load toward 0 A.
- Ammeter should show a reduced output. As the current draw decreases, the battery voltage should stabilize at approximately 14.5 V.
- If results vary, check stator BEFORE replacing the EMM. See Stator Tests on p. 129.

55 V Alternator Circuit

STEP 1
Check battery ground cable for continuity.

STEP 2
With the key switch ON, check battery voltage at battery, then check voltage on white/red wires at J2 connector of EMM. Voltage at EMM connector should be 0.5 to 1 V less than battery.

STEP 3
With outboard running at 1000 RPM, voltage on white/red wires should increase to 55 V.

Voltage readings at a specific speed (RPM) should be steady.

If there is any other reading, perform Stator Resistance Tests on p. 129 and Stator Voltage Output Test on p. 129. Inspect the stator wiring and connections. Inspect the capacitor wiring, connections, and capacitor. Repair the wiring or replace a faulty capacitor, stator, or EMM.
SystemCheck CIRCUIT TESTS

Make sure the SystemCheck engine monitor can alert the operator during a “NO OIL,” “WATER TEMP” or “HOT,” “CHECK ENGINE,” or “LOW OIL” condition. Check the condition of the warning system and associated wiring and connections. Test the engine monitor regularly and anytime you suspect an alert situation has been missed.

The instrument harness must be connected to the outboard before performing the following tests. Refer to the Engine Wiring diagram and the MWS Instrument Wiring diagram in the back of this manual.

IMPORTANT: Use jumper wires made with the appropriate terminals to test the warning circuits.

Gauge Self-Test Check

Turn the key switch to ON with the outboard NOT running. The gauge warning lights for NO OIL, WATER TEMP, CHECK ENGINE, and LOW OIL must all light at once, then turn off in sequence, and the warning horn must sound for one-half second.

If the gauge lights do not turn on, turn the key switch OFF. Disconnect the gauge 8-pin connector from the back of the gauge and turn the key switch ON. Test for battery voltage between instrument harness terminal 1 (purple wire) and terminal 2 (black wire).

- If battery voltage is present, replace the gauge.
- If there is no battery voltage, check that 12 V is present at terminal “B” of the key switch. Check condition of the instrument harness, key switch, and connections.

If the lights worked, but the warning horn did not sound for one-half second, turn the key switch OFF. Disconnect the warning horn 2-pin connector. Substitute a known good warning horn. Turn the key switch ON.

- If the substitute horn beeps, the original horn is defective and must be replaced.
- If the substitute horn does not beep, check for battery voltage between instrument harness 2-pin connector, terminal 2 (purple wire) and ground with the key switch ON. Also, check the tan/blue wire for continuity between pin 8 of the 8-pin connector and pin 1 of the 2-pin connector.
- If battery voltage is present at the purple wire and the tan/blue wire has continuity between...
the two connectors, replace SystemCheck gauge.

Turn the key switch OFF and reconnect all disconnected circuits.

CHECK ENGINE Circuit Test
Separate the 6-pin SystemCheck connector of MWS instrument harness from engine harness. Black wire (pin 3) must be grounded.

Using a jumper wire, connect tan/orange wire (pin 2) to a clean engine ground.

Turn the key switch ON. After the normal self-test sequence, the CHECK ENGINE light should stay on.

• If the CHECK ENGINE light is not on, test circuit for continuity. Check continuity of the MWS instrument harness (tan/orange wire).
• Check continuity of the engine wire harness between terminal 2 (tan/orange wire) of the SystemCheck connector and pin 17 of the EMM J1-A connector.

Turn the key switch OFF and reconnect all disconnected circuits.

WATER TEMP/ HOT Circuit Test
The tan wire of engine harness and the MWS harness receives a signal from the EMM. The EMM receives information from the temperature sensor on the cylinder head.

Using a jumper wire, connect tan wire (pin 6) of the engine harness connector to a clean engine ground.

Turn the key switch ON. After the normal self-test sequence, the gauge WATER TEMP / HOT indicator should stay on.

• If LED is not on, test circuit for continuity. Test for continuity of both the engine harness (tan wire) and the MWS instrument harness (tan wire).

Turn the key switch OFF and reconnect all disconnected circuits.

IMPORTANT: To test the temperature sensor itself, refer to Engine Temperature Sensor Test on p. 128.
LOW OIL Circuit Test
Turn the key switch ON. Using a jumper wire, connect tan/black wire (pin 4) of the engine harness connector to a clean engine ground. The LOW OIL light should turn on after 40 seconds.

If the LOW OIL light does not turn on after connecting the terminal to ground, test circuit for continuity.

Turn the key switch OFF and reconnect all disconnected circuits.

NO OIL Circuit
Separate the 6-pin SystemCheck connector of MWS instrument harness from engine harness. Black wire (pin 3) must be grounded.

Using a jumper wire, connect tan/yellow wire (pin 5) to a clean engine ground.

Turn the key switch ON. After the normal self-test sequence, the NO OIL light should stay on.

• If the NO OIL light is not on, test circuit for continuity. Test for continuity of the MWS instrument harness (tan/yellow wire).
• Test for continuity of the engine wire harness between terminal 5 (tan/yellow wire) of the SystemCheck connector and pin 24 of the EMM J1-A connector.

Turn the key switch OFF and reconnect all disconnected circuits.

REMOTE CONTROL SWITCH TESTS

Key Switch Test
Refer to Wiring Diagrams at back of manual.

Use an ohmmeter or a continuity light to test key switch operation. Replace switch if results are incorrect with any of the following tests.

IMPORTANT: Disconnect battery and key switch wiring before proceeding with the following tests.

STEP 1
Stop/Ground Terminals (M) – Connect meter between the two “M” terminals. Meter must indicate NO continuity at START or ON.

Turn key switch OFF. Meter must indicate continuity.

STEP 2
Accessory Terminal (A) – Make sure the key switch is OFF. Connect the ohmmeter or continuity light between terminals “B” (battery) and “A” (accessory) of key switch. Meter must indicate NO continuity.

Turn switch ON. Meter must indicate continuity.

Turn key switch to START. Meter must continue to indicate continuity.

STEP 3
Starter Terminal (S) – Hold key switch at START. Connect meter between terminal “B” and terminal “S.” Meter should indicate continuity.

IMPORTANT: The choke function or terminal “C” of the key switch is NOT used.
Neutral Start Circuit Test
Use an ohmmeter or continuity light to test the continuity of the circuit while positioning the remote control in NEUTRAL, FORWARD, and REVERSE.

IMPORTANT: Turn propeller shaft or disconnect shift cable to allow proper remote control shift action while outboard is not running. Disconnect the MWS instrument harness connector from the key switch harness connector.

Make sure the remote control handle is in NEUTRAL. Connect meter between terminal 5 (red/purple wire) and terminal 2 (yellow/red wire). Turn the key switch to START. Meter must indicate continuity.

Move the remote control handle to FORWARD and turn the key switch to START. Meter must NOT indicate continuity.

Move the remote control handle to REVERSE and turn the key switch to START. Meter must NOT indicate continuity.

IMPORTANT: Reconnect shift cable and MWS instrument harness connector to key switch harness connector.

Neutral Start Switch Test
Use an ohmmeter or a continuity light to test neutral start switch operation.

IMPORTANT: All wiring must be disconnected from the switch before proceeding with this test.

Disassemble the remote control and remove the neutral start switch.

Connect one meter lead to each terminal of the switch.
- Meter must indicate continuity when the plunger is depressed
- Meter must indicate no continuity when the plunger is released.

Replace switch if results are incorrect.
Emergency Stop Switch Test

This switch can be incorporated into the key switch or installed as a separate switch. Either style effectively connects the “M” terminals of the key switch.

The emergency stop switch function grounds the stop circuit wire (black/yellow) when the lanyard clip is removed. One “M” terminal is the ground wire (black) and one “M” terminal is the stop circuit wire (black/yellow).

Install the clip on the emergency stop switch or key switch. Start the outboard. Pull the clip from the switch. The outboard must stop running.

ELECTRIC STARTER TESTS

Starter Solenoid Test

Disconnect the B+ (POS) battery cable at the battery.

IMPORTANT: Disconnect all wiring from solenoid terminals before proceeding with this test.

Use an ohmmeter to measure resistance.

STEP 1

Put one ohmmeter lead on the starter positive (+) cable terminal and the other ohmmeter lead on the battery positive (+) cable terminal:
- Ohmmeter must not show continuity (high reading).
- If ohmmeter shows continuity (low reading), replace the solenoid.
STEP 2
Apply B+ to terminal “A” of solenoid and ground (NEG) to terminal “B” of solenoid. Measure resistance between the starter positive (+) cable terminal and the positive battery (+) cable terminal.
• The solenoid must close with an audible click.
• Ohmmeter must show continuity (low reading).
• If ohmmeter shows no continuity (high reading), replace the solenoid.

After re-installing the solenoid, coat all wires and terminals with Black Neoprene Dip.

No Load Current Draw Test
Securely fasten starter in a vise or suitable fixture before proceeding with this check.

Use a battery rated at 500 CCA (60 amp-hr) or higher that is in good condition and fully charged.

Use an inductive ammeter or connect a 0 to 100 amp ammeter in series with a heavy jumper between the battery positive (+) terminal and the starter positive (+) terminal.

Fluke model 334 or 336, Snap-On model MT110 or EETA501, and various other ammeters should be available through local tool suppliers.

Attach or hold a vibration tachometer, such as a Frahm Reed tachometer, to the starter.

Complete the circuit with a heavy jumper between the battery negative (–) terminal and the starter frame.

Monitor the starter RPM and current draw.
• At 10,500 RPM the ammeter should show a maximum of 30 A.
TILT/TRIM RELAY TEST

The tilt and trim (TNT) module contains the circuitry and relays required for power trim and tilt operation.

The tilt and trim switch provides B+ input to green/white or blue/white wire of the TNT module.

Operation

The relay activates when B+ input from the switch is supplied to terminal 86 of the internal relays.

Terminal 87a connects to ground (B–).

Terminal 87 connects to B+.

Terminal 30 connects TNT motor.

Terminals 87a and 30 are connected when relay is not activated. This supplies ground (B–) connection to TNT motor.

Terminals 87 and 30 are considered “normally open.” B+ is applied to terminal 30 when relay is activated. This supplies ground B+ connection to TNT motor.

Refer to Tilt and Trim Module Diagram.

Test Procedure

Make sure red and black wires are connected to 12 V battery power supply.

Set voltmeter to 12 VDC scale. Connect test leads to terminals “A” and “B” of TNT motor connector.

Use a wire jumper to alternately connect B+ to terminals “1” and “2” of tilt and trim switch connector. The meter must indicate battery voltage (12 V) with B+ connected to either terminal.

Tilt and Trim Module Diagram

1. Green/white wire
2. Blue/white wire
3. B+, red wire
4. B–, black wire
5. TNT motor connector
6. TNT switch connector
TACHOMETER CIRCUIT TESTS

IMPORTANT: Make sure all outboard and boat wiring and connectors are in good condition.

Check voltage at the battery. Use this reading as a reference for battery voltage.

STEP 1
Connect the red meter lead to the tachometer purple wire and the black meter lead to the tachometer black wire (key ON, outboard NOT running).
- If meter shows battery voltage, go to STEP 2.
- If meter shows less than battery voltage, check the purple, red/purple, and black wiring circuits, fuse, key switch, and battery connections.

STEP 2
Disconnect instrument harness gray wire and black wire at tachometer. Set *Fluke 29 Series II* meter, or equivalent, to Hz scale. Connect meter between gray wire and black wire. With outboard running at 1000 RPM, meter should indicate 90 to 105 Hz.
- If meter reads 90 to 105 Hz, replace tachometer.
- If meter reads low or no signal, confirm output on gray wire at pin 16 of *EMM J1-A* connector.
 – Reading OK – Check condition of tachometer circuit (gray wire). Repair as needed.
 – Reading not OK – Check connection at *EMM*; replace faulty *EMM*.

1. Purple lead
2. Black lead
3. Gray lead
FLYWHEEL SERVICING

IMPORTANT: Weak flywheel magnets can cause low alternator output and affect outboard performance. Weak flywheel magnets can also cause low readings on ignition test equipment such as the peak-reading voltmeter, which might cause unnecessary replacement of ignition components.

An accurate test of alternator output can help determine the flywheel’s condition. Refer to CHARGING SYSTEM TESTS on p. 130.

Removal

WARNING

To prevent accidental starting while servicing, disconnect the battery cables at battery.

Remove the electrical cover from flywheel cover.

Disconnect wiring for MWS harness and remove wiring from cover.

Remove fuse holder from flywheel cover.

Lift flywheel cover to remove.
Remove flywheel nut using Flywheel Holder, P/N 771311, or equivalent, and a 1 5/16 in. socket. Discard flywheel nut.

Apply Moly Lube grease to the threads of the puller pressing screw, P/N 307637, and the center hole of the crankshaft.

Assemble the following components from Universal Puller Set, P/N 378103:
• Body, P/N 307636
• Screw, P/N 307637
• Handle, P/N 307638
• Three screws P/N 309492
• Three washers, P/N 307640

Put the puller on flywheel with body flat side up. Attach the puller body with the three shoulder screws and washers. Hold puller body with handle, and tighten pressing screw until flywheel releases. Turn the center screw and lift the flywheel off of the crankshaft.

Installation
Install the outer edge of flywheel key parallel with centerline of crankshaft.

Thoroughly clean the crankshaft and flywheel tapers with Cleaning Solvent™ and let dry.

Align the flywheel keyway and install flywheel. Coat the threads of a new flywheel nut with Triple-Guard grease. Install the washer and nut and torque to 100 to 115 ft. lbs. (136 to 156 N·m).
TIMING ADJUSTMENTS

Timing Pointer

The timing pointer must be adjusted to indicate “top dead center” (TDC) of the number 1 piston. This reference to the position of the number 1 piston is used to synchronize the electronic timing controlled by the EMM with the mechanical position of the number 1 piston.

![Timing Pointer Image]

WARNING

To prevent accidental starting while servicing, remove emergency stop lanyard and disconnect the battery cables at the battery.

1. Piston stop tool, P/N 342679
2. Number 1 cylinder

Turn the key switch OFF and disconnect the battery cables at the battery.

Remove spark plugs. Rotate the flywheel clockwise to 30° ATDC. Install Piston Stop Tool, P/N 342679, into the spark plug hole of the number 1 cylinder.

![Flywheel Image]

Rotate flywheel in a clockwise direction until the piston contacts the tool. Mark the flywheel directly across from the pointer. Label this mark “A.”

![Mark A]

Rotate flywheel in a counterclockwise direction until the number 1 piston contacts the tool. Keep pressure on the flywheel to position the piston firmly against the tool. Mark the flywheel directly across from the pointer. Label this mark “A.”

![Mark B]

Rotate the flywheel in a clockwise direction until the piston contacts the tool. Mark the flywheel directly across from the pointer. Label this mark “B.” Rotate flywheel counterclockwise slightly to release tool and remove it from spark plug hole.

Use a flexible measuring device to measure the distance between marks “A” and “B.” Measure along the edge of the flywheel. Mark the midpoint on the flywheel. Label this mark “C.” If mark “C” and the cast-in TDC boss on flywheel are in alignment, the timing pointer is in the correct location.

![Mark C]

1. Timing pointer
2. Mark “A”
3. Mark “B”
4. Mark “C”
5. TDC boss
If the pointer alignment is NOT correct, rotate the flywheel clockwise to align the mark “C” with the pointer. Hold the flywheel in this position. Loosen the pointer retaining screw and adjust the pointer location to align with the cast-in TDC boss on the flywheel. Tighten retaining screw.

Install spark plugs. Refer to Spark Plug Indexing on p. 144.

Timing Verification

Use the *Evinrude* Diagnostics Software program to synchronize the mechanical timing of the outboard with the electronic timing control function of the *EMM*.

Perform timing verification after any of the following procedures:

- Powerhead replacement
- Crankshaft replacement
- Flywheel removal or replacement

• CPS replacement
• *EMM* replacement
• *EMM* software replacement (reprogramming)

IMPORTANT: Make sure the timing pointer is set and the outboard reaches operating temperature before timing verification is performed.

TPS Calibration

Use the *Evinrude* Diagnostics Software program to tell the *EMM* what the throttle position sensor voltage level is when the throttle plates begin to open.

Remove the air silencer.

On the Settings screen of the diagnostic software, click the “Set TPS Calibration” button.

While holding the throttle plates closed, advance the throttle linkage until it stops. The “Measured TPS Calibration” field on the screen will increase.

Click the “Working” button in the software to calibrate the TPS.

Install the air silencer.

Perform TPS Calibration after replacing or adjusting any throttle body or throttle linkage parts.
SPARK PLUGS

Inspection
Spark plugs should be removed and examined periodically. Replace worn, fouled or damaged spark plugs.

Use only recommended spark plugs with the correct gap setting.

- Remove spark plugs and inspect condition.
- Set spark plug gap on new, replacement spark plugs.
- Mark spark plugs for ground electrode orientation.
- Apply *Electrical Grease* to the ribbed portion of the spark plug ceramic and to the opening of the spark plug cover to prevent corrosion.
- Install spark plugs using “indexing” procedure.

Spark Plug, Champion

| QC12PEPB @ 0.030 ± 0.003 in. (0.76 mm) |

Indexing
Spark plug indexing positions the ground electrode of the spark plug opposite the fuel injector nozzle.

Put an ink mark on the ceramic of the spark plug that is in line with the OPEN side of the ground electrode. This mark will be used to orient the spark plug with the OPEN side of the ground electrode facing the fuel injector.

Apply *Triple-Guard* grease to the gasket surface of the spark plugs. Install all spark plugs and tighten them to a torque of 15 ft. lbs. (20 N·m).

If the mark is in unshaded area do not tighten anymore.

If the mark is in the shaded area, reset torque wrench to 30 ft. lbs. (41 N·m) and continue to turn until the mark is in the unshaded area.

If the mark does not reach the unshaded area before the torque of 30 ft. lbs. (41 N·m) is reached, the spark plug cannot be indexed for that cylinder. Try another spark plug and repeat the steps above.

1. Ink mark
2. Open side

1. Unshaded area
2. Shaded area
ELECTRIC STARTER SERVICING

Removal

IMPORTANT: Do not clean the starter drive while the starter motor and drive are installed on the powerhead. The cleaning agent could drain into the starter motor, washing dirt from the drive into the starter bearings and commutator.

Disconnect the battery cables at the battery.

Remove port side lower motor cover. Refer to Powerhead REMOVAL on p. 205.

Disconnect battery positive (+) cable from post on starter.

Remove the three screws from the starter.

Remove the starter from engine.

Disassembly

Remove the retaining ring, spacers, spring and starter pinion from pinion shaft.

Mark the end cap and brush holder cap orientation. Remove the two thru-bolts.

Remove the end cap and thrust washer.
Remove brush holder cap from armature and frame assembly. Do not lose the brush springs.

Slowly, remove the armature from frame.

Cleaning and Inspection
Inspect the brushes for wear and damage. Replace brushes if damaged or worn. Replace weak brush springs.

Clean the commutator with 300-grade emery cloth. If commutator surface is unevenly worn or pitted, turn it on a lathe. Remove any trace of oil or metal dust from commutator.

Check the armature on a growler for shorted turns using a test light or meter. Inspect armature insulation for indications of overheating or damaged windings. Clean off any carbon deposits or foreign matter which could contribute to failure of windings.

Check permanent magnets and make sure they strongly attract any steel or iron object held inside frame. Weak magnetism could cause excessive RPM on No Load Current Draw Test on p. 137.

After disassembling the drive, clean each part with Cleaning Solvent and inspect for wear and distortion.
If the pinion does not properly engage the flywheel, the pinion and screw shaft assembly could be worn, distorted, or dirty. Locate the cause of binding and correct it before completing the assembly.

Inspect and replace end cap thrust washer if distorted or worn excessively.

Assembly

IMPORTANT: If removed, apply *Locquic Primer* and *Screw Lock* to the brush card screws before installing.

Place armature in frame.

Apply *Extreme Pressure Grease* to the armature bushing.

Route the brush leads and install the springs and brushes.

IMPORTANT: Incorrect orientation of the brushes could damage the starter or cause reverse rotation.

Compress the brushes and springs with a modified putty knife.

Align and place brush holder cap firmly on armature and slide putty knife out, making sure the brushes are retained properly.

Install thrust washer. Align and place end cap onto armature shaft.
Apply *Locquic Primer* and *Screw Lock* to the threaded portion, and install the two thru-bolts. Torque bolts 100 to 110 in. lbs. (11 to 12.5 N·m).

Lubricate the splines (helix) of starter pinion shaft with *Starter Bendix Lube*. DO NOT use liquid or aerosol spray lubricants.

Install spacer and retaining clip. Spacer must be raised to cover clip completely.

To test the assembly and operation of the starter, refer to *No Load Current Draw Test* on p. 137.

Installation

Apply *Triple-Guard* grease to the threads of the two starter screws, the double-ended stud, and also to the washers.

Position the starter and install the screws and washers. Torque to 168 to 192 in. lbs. (19 to 21 N·m).

Attach starter positive (+) cable to post with lock washer and nut; tighten securely. Coat connections with *Black Neoprene Dip*.

Attach the battery negative (−) cable to the starter frame. Attach the starter positive (+) cable to the starter’s positive terminal.

Coat all electrical connections with *Black Neoprene Dip*.
CONNECTOR SERVICING

DEUTSCH Connectors

IMPORTANT: Electrical Grease is recommended. Incorrect grease application can cause electrical or warning system problems.

To disconnect the connector, press the latch and pull the connectors apart.

To connect the connector, confirm that the seal is in place. Clean off any old grease and dirt from connectors. Apply a light coat of Electrical Grease to seal. Push connectors together until latched.

Terminal Removal
Use hook-end of Connector Service Tool, P/N 342667, to pull out wedge from receptacle, or use other end of tool to pry out wedge from plug. Use needle-nose pliers to remove wedge from 3-pin receptacle.

Release terminal latch and gently pull on wire.

Terminal Installation
Push terminal through seal until it locks into place. Fill connector with Electrical Grease to 1/32 in. (0.8 mm) below ledge or end of plug.

Push wedge in until latched. Wedge in 2-pin receptacle is not symmetrical; position latch shoulders next to terminals.

Crimping Terminals
ELECTRICAL AND IGNITION
CONNECTOR SERVICING

AMP Connectors

IMPORTANT: Always use the appropriate meter test probes and adapters when testing components fitted with these terminals. Electrical grease is NOT used on AMP connectors.

SUPERSEAL† 1.5

Disconnect
Lift latch. Pull connectors apart.

Connect
Confirm the seal is in place. Push connectors together until latched.

Terminal Removal
Use Secondary Lock Tool, P/N 777078, to release anti-backout device of connector housing. Next, use Primary Lock Tool, P/N 777077, to release locking tab of connector housing. Release locking tab and pull on wire to remove from connector housing.

Crimping Terminals
Crimping Superseal 1.5 terminals requires the PRO-CRIMPER II † with a specific crimping die set.

The PRO-CRIMPER II hand tool assembly, P/N 58583-1, comes with die assembly P/N 58583-2.
SUPER SEAL†
The J1-A and J1-B connectors of the EMM are AMP Super Seal connectors.

Disconnect
Depress BOTH latches and pull connector from plug.

Connect
Push connector into plug until latches engage.

Terminal Removal
Open lock mechanism and remove terminal from connector housing.

Terminal Installation
Push terminal through seal until it is seated in connector housing. Close lock mechanism.

POWER TIMER† SERIES
The J2 connector of the EMM is a AMP Power Timer Series connector.

Disconnect
Use a screw driver to open latch. Pull connector from plug.

Connect
Push connector until seated in plug. Close latch completely.

Terminal Removal
Use Terminal Release Tool, P/N 351413, to release BOTH locking mechanisms of connector. Pull terminal from housing.
Terminal Installation
Align terminal with connector housing and push terminal with seal into connector housing until seated.

Packard† Connectors

IMPORTANT: Always use the appropriate meter test probes and adapters when testing components fitted with these terminals.

Disconnect
Lift latch(s). Remove connector.

Connect
Confirm the seal is in place. Push connector onto housing until latched.
Terminal Removal
A tab on the back side of the terminal engages a shoulder in the connector housing to hold the terminal in place. The terminal is removed by pushing wire and terminal through connector housing.

Insert a thin wire, such as a paper clip, into the connector above the terminal to release tab.

Terminal Installation
Install wire gasket on wires and feed wires through the correct terminal position of the connector housing. Terminal is crimped onto wire and then pulled back into connector housing until locking tab engages and terminal is seated.

Crimping Terminals
Strip insulation back 3/16 in. (5 mm). Position end of wire strands in terminal past the wire crimp area and the end of insulation in the insulation crimp area of the terminal.

Capture all wire strands in crimp; leave no loose strands. Crimp wire and insulation securely using crimping pliers.
ELECTRICAL AND IGNITION
NOTES

TECHNICIAN’S NOTES

<table>
<thead>
<tr>
<th>Technician’s Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

RELATED DOCUMENTS

<table>
<thead>
<tr>
<th>Bulletins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

SERVICE CHART ... 156
COMPONENTS ... 158
 FUEL LIFT PUMP ... 158
 FUEL FILTER ... 158
 VAPOR SEPARATOR .. 158
 FUEL CIRCULATION PUMP ... 160
 FUEL MANIFOLDS ... 160
 FUEL INJECTORS .. 161
FUEL SYSTEM HOSE ROUTING .. 162
DIRECT INJECTION ELECTRICAL CIRCUITS 163
 INJECTOR / CIRCULATION PUMP CIRCUITS DIAGRAM 163
FUEL COMPONENT TESTS .. 164
 INJECTORS ... 164
 FUEL SUPPLY ... 165
FUEL COMPONENT SERVICING .. 168
 RELIEVING FUEL SYSTEM PRESSURE 168
 FUEL FILTER ... 169
 FUEL LIFT PUMP .. 169
 VAPOR SEPARATOR .. 170
 FUEL INJECTORS .. 170
 FUEL MANIFOLDS .. 174
INTAKE MANIFOLD .. 174
 REMOVAL ... 174
 DISASSEMBLY .. 174
 INSPECTION ... 175
 ASSEMBLY ... 175
 INSTALLATION .. 176
SERVICE CHART

INJECTORS, VAPOR SEPARATOR, FUEL PUMP

Torque in 3 stages

1. 60-84 in. lbs. (6.8-9.5 N·m)
2. 120 in. lbs. (14 N·m)
3. 24-26 Ft. lbs. (33-35 N·m)

A Triple-Guard Grease
B Gasket Sealing Compound
C Adhesive 847
E Red Ultra Lock
F Blue Nut Lock
H Outboard Engine Lubricant
S STP* Oil Treatment

Torque in 3 stages

A

60-84 in. lbs. (7-9.5 N·m)

60-84 in. lbs. (7-9.5 N·m)

24-36 in. lbs. (2.8-4.0 N·m)
REED PLATE ASSEMBLY AND THROTTLE BODY

- **A** Triple-Guard Grease
- **B** Gasket Sealing Compound
- **C** Adhesive 847
- **D** Moly Lube
- **E** Red Ultra Lock
- **F** Blue Nut Lock
- **G** Needle Bearing Grease

25-35 in. lbs (2.8-3.5 n·m)

60-120 in. lbs (7-14 n·m)

10-14 in. lbs (1.1-1.6 n·m)

IMPORTANT: DO NOT lubricate TPS to throttle shaft surface.
COMPONENTS

The Evinrude E-TEC direct injection system consists of the following components:

- Fuel Lift Pump
- Fuel Filter
- Vapor Separator
- Fuel Circulation Pump
- Fuel Supply Manifolds
- Fuel Return Manifolds
- Fuel Injectors

Fuel Lift Pump

The fuel lift pump is a mechanical, pressure-pulse pump. The diaphragm of the pump is driven by a pulse hose that connects to the number 3 cylinder of the cylinder/crankcase assembly.

Vacuum from the fuel lift pump pulls fuel from the fuel tank. Once fuel reaches the pump, internal pump pressure forces the fuel from the pump through the fuel filter and into the vapor separator.

IMPORTANT: The oil injector supplies oil to the outboard's incoming fuel supply. A limited amount of oil is injected into the fuel supply to clean injectors and reduce internal fuel system deposits. Refer to Oil Supply and Distribution Diagram on p. 182.

Fuel Filter

The in-line filter protects the vapor separator and the high-pressure components of the fuel system from water and contaminants. Refer to INSPECTION AND MAINTENANCE SCHEDULE on p. 72 for service frequency.

Vapor Separator

The vapor separator:

- Serves as a water-cooled fuel reservoir to accumulate incoming fuel from the fuel lift pump and from the fuel return manifold;
- Contains a float controlling the venting of fuel vapors; and
- Contains a fuel pressure regulator for the high pressure fuel system.
The vapor separator is serviced as an assembly and includes the fuel circulation pump.

Fuel Reservoir

The vapor separator accumulates fuel in an internal fuel reservoir and supplies fuel to the electric circulation pump. It is water-cooled to enhance vapor separating capabilities.

Cooling

Water is used to cool the fuel as it flows through the vapor separator. The water cavity of the separator self-drains when the outboard is stored vertically. Refer to HOSE ROUTING AND WATER FLOW DIAGRAM on p. 192.

Venting

The fuel vapor vent regulates fuel vapor pressure in the fuel system.

The vapor separator vent is opened and closed by a float valve. The float valve moves relative to the fuel level in the fuel chamber. Hot fuel causes an increase in vapor pressure. This results in a lower fuel level in the vapor separator. The float valve drops and the vent opens. This allows fuel vapor to flow to the intake manifold through the vent hose.

As the vapor pressure in the vapor separator decreases, the fuel level begins to increase. An increase in the fuel level raises the float valve and the vent closes.
Pressure Regulator
The fuel pressure regulator helps maintain consistent fuel pressure in the fuel system.

Fuel returning from the injectors enters the fuel chamber of the vapor separator through a pressure regulator. The pressure regulator maintains approximately 20 to 30 psi (138 to 207 kPa) of fuel pressure in the high pressure side of the fuel system.

Fuel Circulation Pump
The fuel circulation pump is an electric high pressure fuel pump. The pump is controlled by the EMM.

Fuel Supply
The pump is mounted to the vapor separator and draws fuel from the fuel chamber. The fuel injectors receive pressurized fuel from a fuel supply manifold connected directly to the circulation pump.

Electrical Circuit
Activation of the circulation pump is controlled by the EMM. The outboard must be cranking or running for the circulation pump to be activated. Activation of the circulation pump requires CPS input to the EMM.

Fuel Manifolds
The fuel supply and return manifolds route fuel through the high pressure side of the fuel system.

Fuel Supply Manifold
The fuel supply manifold supplies pressurized fuel to the inlet port of each fuel injector.

Fuel Return Manifold
The fuel return manifold provides a route for fuel passing through the fuel injectors to flow back to the fuel chamber of the vapor separator.
Fuel Injectors
Fuel injectors are fuel metering (55 V), electric injector pumps bolted directly to the cylinder head. The EMM supplies 55 V and controls the activation of each injector.

Fuel Flow Compensation
Flow tests included in the injector manufacturing process measure the flow rates of each injector. Each injector's fuel flow rate is recorded and converted to specific coefficients. These coefficients are assigned to the injector by serial number.

Each individual service injector includes these coefficients on a 3.5 in. floppy disk. The disk also includes the software necessary to install a replacement injector. This software enables the EMM to control each injector based on unique fuel flow characteristics.

IMPORTANT: The cylinder location of each injector must always be maintained. EMM programming is associated with the cylinder location of each injector.

Injector Fuel Supply
Fuel is supplied to the injectors by the fuel circulation pump and the fuel supply manifold.

Each injector has internal fuel passages. These passages are designed to:
- Provide fuel to the injector's injection chamber
- Route fuel through the injector housing to cool the injector coil and armature.
1. Fuel supply from boat fuel system
2. Oil into fuel supply
3. Fuel lift pump (2 to 8 psi)
4. Pulse hose from cylinder/crankcase
5. Fuel filter
6. Fuel supply to vapor separator
7. Vapor separator
8. Electric fuel circulation pump (20 to 30 psi)
9. Fuel supply manifold
10. Fuel injector(s)
11. Fuel return manifold
12. Vent hose to intake manifold
13. Pressure regulator (high pressure)
DIRECT INJECTION ELECTRICAL CIRCUITS

The outboard’s 55 V alternator circuit supplies the injectors and fuel circulation pump with the current required to activate the fuel injectors and pump. Unique circuits from the EMM distribute this current to the specific injector or pump.

The EMM controls injector and pump operation by rapidly connecting and disconnecting one side of each component’s internal coil to ground. Current must flow from the EMM to the injectors and pump, through the winding of the component, back to the EMM, and through the EMM to ground. The injector’s internal coil provides approximately 3 ohms of resistance in the injector circuit.

Requirements for injector or circulation pump activation:
- 55 V output from the alternator to the EMM and through the individual circuits; and
- Switched ground connection provided by the EMM.

IMPORTANT: The 55 V alternator output is produced by stator input to EMM and rectifier circuits of EMM.

Injector / Circulation Pump Circuits Diagram

1. Stator
2. EMM
3. Fuel injector
4. Fuel circulation pump
5. Capacitor
6. WHITE/RED (55 V)
7. BLACK ground wires
8. BLUE
9. PURPLE
10. GREEN (2)
11. BROWN
FUEL COMPONENT TESTS

WARNING
Carefully relieve fuel system pressure before disassembling any fuel system component.

Injectors

Pressure Test
This test requires fitting and O-ring kit, P/N 5005844.

Disconnect the battery cables at the battery.

Relieve fuel system pressure. See *Relieving Fuel System Pressure* on p. 168.

IMPORTANT: Perform test with injector mounted to cylinder head and fittings installed with manifold retainer.

Use cap and tie strap to seal off outlet fitting and connect a 0 to 30 psi (0 to 207 kPa) pressure tester to the inlet fitting. Pressurize the injector to 30 psi (207 kPa). Pressure must hold for at least five minutes.

Static Test

Use the *Evinrude* Diagnostics Software program to test circulation pump and fuel injectors.

IMPORTANT: Static tests are performed when outboard is not running. Listen carefully for fuel pump and injector activation. These tests are operating components on battery voltage (12 V).

Resistance Test

Disconnect the battery cables at the battery.

Use a digital multimeter to measure the injector circuit and coil resistance.

<table>
<thead>
<tr>
<th>Injector Coil Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.28 Ω @ 72°F (22°C)</td>
</tr>
</tbody>
</table>

1. Outlet fitting
2. Inlet fitting

Fluke Model 29 Multimeter
Fuel Supply

Fuel System Pressure Test
Relieve fuel system pressure. See Relieving Fuel System Pressure on p. 168.

⚠️ WARNING ⚠️
Use caution when working on any pressurized fuel system. Wear safety glasses and work in a well ventilated area. Extinguish all smoking materials and make certain no open flames or ignition sources exist. Failure to properly relieve fuel system pressure can result in spraying fuel and/or excessive fuel spillage during servicing. Fuel is flammable and can be explosive under certain conditions.

After relieving fuel system pressure, install a 0 to 100 psi (0 to 690 kPa) Fuel Pressure Gauge, P/N 5000902 or equivalent, to the upper fuel pressure test fitting.

START outboard and check pressure. System pressure should be 20 to 30 psi (138 to 207 kPa).

Shut OFF outboard. Monitor pressure gauge. Pressure should not drop below 15 psi (103 kPa).

IMPORTANT: If outboard does not run, prime fuel system and crank outboard; check circulation pump operation; check fuel system pressure.

Relieve fuel system pressure before removing fuel pressure gauge. See Relieving Fuel System Pressure on p. 168.

Results:
Normal pressure
- Observe pressure reading after outboard is shut OFF.
- Proceed to Lift Pump Pressure Test on p. 166.

Pressure drops after outboard shut OFF
- Leaking fuel injector
- Leaking pressure regulator
- External fuel system leak

High pressure
- Suspect damaged pressure regulator in vapor separator, restricted fuel return manifold, or vapor separator fitting.

Low pressure
- Check fuel supply to fuel lift pump. Refer to Lift Pump Vacuum Test on p. 167. Higher vacuum readings indicate restrictions in the fuel supply. Repair or replace as needed.
- Lift pump not supplying adequate fuel to vapor separator. Refer to Lift Pump Pressure Test on p. 166.
- If the above requirements are met and vapor separator remains full of fuel, suspect damaged circulation pump. Replace vapor separator assembly.

No pressure
- Check electrical circuit and ground connections for circulation pump.
- Voltage present and pump does not run. Repair connection or replace vapor separator assembly.

Pressure Regulator Test
Refer to “Vapor Separator” on page 170 to remove vapor separator. Apply oil to valve and connect pressure pump and hose to the fuel return fitting of vapor separator. Apply pressure to check regulator operation. The pressure should
FUEL SYSTEM
FUEL COMPONENT TESTS

open check valve at approximately 15 psi (103 kPa).

Circulation Pump Resistance Test
Disconnect the battery cables at the battery.

Use a digital multimeter to measure the fuel pump circuit and coil resistance.

<table>
<thead>
<tr>
<th>Fuel Pump Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between 2 and 3 Ω @ 77°F (25°C)</td>
</tr>
</tbody>
</table>

Lift Pump Pressure Test
Install a 0 to 15 psi (0 to 103 kPa) Fuel Pressure Gauge, P/N 5006397 or equivalent, to the lower fuel pressure test fitting.

Prime the fuel system and check for leaks. START outboard and run at idle speed. Hold gauge level with inlet fitting and monitor gauge for pressure reading.

Pressure should stabilize and gauge must not indicate less than 3 psi (27 kPa).

Results:

Normal pressure
• Perform the Lift Pump Vacuum Test on p. 167. Make certain no air leaks or restrictions exist in the fuel supply hose or boat fuel system.

Low pressure
• Check pulse hoses and fittings for restrictions.
• Perform the Lift Pump Vacuum Test on p. 167. Make sure no air leaks or restrictions exist in the fuel supply hose or boat fuel system.
• Check fuel flow through fuel lift pump. Use fuel primer bulb to force fuel through pump.

No pressure
• Check pulse hoses and fittings restrictions.
• Check fuel flow through fuel lift pump. Use fuel primer or primer bulb to force fuel through pump.
• Momentarily prime or squeeze primer bulb to check gauge operation.
• Check pulse hose and fittings for restrictions.
Lift Pump Vacuum Test
Confirm fuel supply to the fuel lift pump.

Temporarily install a vacuum gauge, T-fitting, and 8 in. (20.3 cm) of clear vinyl hose between the fuel supply hose and fuel lift pump (inlet). Secure connections with tie straps to prevent fuel or air leaks.

IMPORTANT: Do not use fuel primer bulb, manual fuel primer, or electric fuel pump primer to restart outboard. A positive pressure in the fuel supply could damage some vacuum gauges.

START outboard and run at FULL THROTTLE for at least two minutes. Monitor clear vinyl hose for the presence of air. Air bubbles indicate a faulty hose, connection, or fuel tank pick-up. Repair, if necessary, before proceeding.

There should be no air or vapor bubbles visible in the clear hose. The maximum inlet fuel vacuum should not exceed 4 in. Hg. (13.5 kPa) at the inlet to the fuel lift pump under any operating conditions (IDLE to WOT).

A higher vacuum indicates an excessive restriction in the fuel supply. Repair as needed. Refer to Fuel System Requirements on p. 39 for fuel supply component requirements.

Lift Pump Diaphragm Test
Perform this test only if a damaged pump is suspected. This test does not confirm the performance of internal fuel pump check valves.

Remove the pulse hose from the crankcase fitting.

Apply 15 psi (103 kPa) to the pulse hose of the pump. Replace lift pump if pump fails to hold pressure.

Anti-Siphon Valve Test
Remove anti-siphon valve from fuel tank. Install adapter fittings and a 36 in. (91.4 cm) length of clear hose to the inlet side (tank end) of valve.

Fill clear hose with water to a height of 20 in. (500 mm). Water must NOT flow through valve. An occasional drip is acceptable. Replace valve if water drips continuously.

Increase height of water to 25 in. (630 mm). Water should flow through valve as water level reaches 25 in. (630 mm). Replace the anti-siphon valve if test results are different.
FUEL COMPONENT SERVICING

WARNING

Gasoline is extremely flammable and highly explosive under certain conditions. Use caution when working on any part of the fuel system.

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure. Refer to Relieving Fuel System Pressure.

Always disconnect the battery cables at the battery before servicing the fuel system unless instructed to do otherwise.

Always work in a well ventilated area and wipe off any fuel spillage.

DO NOT smoke and make certain no open flames or ignition sources exist.

After servicing the fuel system check for leaks. Failure to check for fuel leakage could allow a leak to go undetected, resulting in fire or explosion.

Relieving Fuel System Pressure

WARNING

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure.

IMPORTANT: Minimize fuel system pressure prior to disassembly. Temporarily restrict the fuel supply hose from fuel tank with hose pincer. Remove propeller and disconnect circulation fuel pump electrical connector. If outboard runs, start and run at IDLE for 5 seconds and STOP outboard. If outboard does NOT run, crank for 10 seconds.

Disconnect the battery cables at the battery.

Wrap a shop towel completely around the pressure test valve while connecting Fuel Pressure Gauge, P/N 5000902, to top test fitting of high pressure fuel pump/vapor separator assembly.

Insert venting hose of gauge into a suitable container.

Slowly open gauge's venting valve.

Clean up any spilled fuel with shop towels.
Fuel Filter

Removal
Disconnect the battery cables at the battery.

Remove filter carefully to prevent spilling contents.

Inspect contents for any presence of water. If water is present, identify the source and correct the problem. Take additional fuel samples and drain fuel tank(s) if necessary.

Installation
Position filter in fuel supply hoses. Note arrow indicating direction of fuel flow on filter. Secure filter with appropriate clamps.

Squeeze primer bulb to prime fuel system. Hold pressure on bulb and check for fuel leaks.

Connect battery cables.

Run outboard and check for fuel leaks.

Fuel Lift Pump

The fuel lift pump is serviceable as a complete assembly or can be repaired with a fuel pump repair kit. Refer to appropriate parts catalog for service parts.

Removal
Disconnect the battery cables at the battery.

Remove air silencer and lower motor covers as needed.

Disconnect the fuel lift pump pulse hose at the crankcase fitting.

Disconnect the fuel supply hose at the in-line oil supply fitting.

Disconnect the fuel outlet hose from the fuel filter housing.

Loosen the fuel lift pump mounting screws. Remove the fuel lift pump as an assembly.
Installation
Fasten fuel pump to the cylinder/crankcase with pump to crankcase screws.

Apply Nut Lock to screws and install screws into crankcase. Torque screws to 24 to 36 in. lbs. (2.8 to 4.0 N·m).

Connect the fuel outlet hose to the fuel filter. Secure with tie strap.

Connect the fuel supply hose to the in-line oil supply fitting. Secure with 18.5 mm Oetiker clamp.

Route and connect the fuel lift pump pulse hose to the crankcase. Secure with tie strap.

Squeeze primer bulb to prime fuel system. Hold pressure on bulb and check for fuel leaks.

Install lower engine covers and air silencer. Connect battery cables.

Run outboard and check for fuel leaks.

Vapor Separator

Removal
Disconnect the battery cables at the battery.

Relieve fuel system pressure. Refer to Relieving Fuel System Pressure on p. 168.

Disconnect circulation pump electrical connector.

Remove clamp and fuel supply manifold from top of circulation pump. Remove clamp and vapor vent hose from separator cover.

Remove clamps and vapor separator cooling water hoses.

Remove clamps and fuel return manifold and fuel supply hose from bottom of vapor separator.

Remove the vapor separator housing retainer clip.

Remove vapor separator/fuel pump from the mounting stud and slide vapor separator housing from the grooves of the isolator mounts.

Installation
Installation is essentially the reverse of removal. Pay close attention when performing the following additional tasks.

Reinstall all hoses and manifolds to original locations and secure in place with appropriate clamps. Squeeze primer bulb to prime fuel system. Hold pressure on bulb and observe for fuel leaks.

Install lower engine covers and air silencer. Connect battery cables.

Run outboard and check for fuel leaks.

Fuel Injectors

IMPORTANT: Note the proper locations and positioning of all spark plug leads and retainer clips prior to disassembly.

Remove high tension spark plug leads and retainers that are used to position the spark plug leads.

Mark fuel injector(s) to indicate cylinder location(s).
IMPORTANT: Fuel injector(s) must be installed in the correct cylinder location(s). Use the Evinrude Diagnostics Software program to confirm that the EMM programming matches injector positioning by cylinder location. The injector information screen of the diagnostic program displays injector serial numbers.

Use caution when handling fuel injectors. Prevent dirt and debris from entering fuel inlet and outlet ports of injectors or fuel tubes. Cover the injector nozzle port in cylinder head to prevent contamination of combustion chamber.

Removal

Disconnect the battery cables at the battery.

Relieve fuel system pressure. Refer to **Relieving Fuel System Pressure** on p. 168.

Remove oil tank assembly.

Remove the injector/fuel fitting retainer and disengage fuel manifold fittings.

Use caution when handling fuel injectors. Prevent dirt and debris from entering fuel inlet and outlet ports of injectors or fuel tubes. Cover the injector nozzle port in cylinder head to prevent contamination of combustion chamber.

Removal

Disconnect the battery cables at the battery.

Relieve fuel system pressure. Refer to **Relieving Fuel System Pressure** on p. 168.

Remove oil tank assembly.

Crush Ring Replacement

IMPORTANT: Injector crush rings must be replaced if injector is installed in a different head or cylinder location.

Use Slide Hammer assembly, P/N 391008, with Slide Hammer Adaptor kit, P/N 390898, to remove injector from mounting cup.
Thread adaptor and stud into face of injector. Hold mounting cup securely. Work slide hammer to separate injector from mount housing.

Remove adaptor from injector. Remove crush ring and O-rings from injector. Inspect and clean injector filter. Install new crush ring and O-rings. Lubricate O-rings with \textit{STP} * \textit{Oil Treatment}.

Reinstall injector into mount housing. Press on injector face until injector seats in mount housing.

\textbf{Installation}

\textbf{IMPORTANT:} All injectors must be installed in the correct cylinder by serial number. Improper injector installation can result in outboard failure.

Installation of replacement injectors requires the use of diagnostic software and coefficient data supplied with all replacement injectors on 3.5 in. floppy disk.

\textbf{IMPORTANT:} PDA software requires manually moving the coefficient data file to the “PDS_data” folder on a PC and then a “hotsync” of the PDA before the injector serial number can be reviewed on the PDA. Refer to the electronic user’s guide on the Engine Diagnostics CD.
The following items and their mating surfaces must be cleaned prior to reassembly:
- Injector
- Cylinder head
- Adapter
- Screws
- Threaded areas

CAUTION

All injector components must be clean to ensure correct torque tightening specifications. To prevent fuel leakage, carefully follow these installation instructions.

Position injector and insulator in the proper cylinder location.

IMPORTANT: Be careful not to pinch any wiring or hoses during assembly.

Lubricate mounting screw threads and under the head of screw with a light coat of Triple-Guard grease. Install washers (one per screw) on injector retaining screws. Install screws and washers through mounting flange of injector and thread into cylinder head.

Tighten screws in stages, starting with the lower screw.
- First torque is 5 ft. lbs. (7 N·m)
- Second torque is 10 ft. lbs. (14 N·m)
- Final torque is 24 to 26 ft. lbs. (33 to 35 N·m).

Check condition of sealing O-rings on fuel manifold fittings. Lubricate O-rings with outboard lubricant and insert fuel manifold fittings into injector. Both fittings must be fully seated into the injector fuel ports.

Install retainer and screw. Retainer must engage the outer groove of the manifold fittings.

Reconnect fuel injector/coil electrical connectors and high tension spark plug leads with retainers.

Reconnect battery cables. Start outboard briefly to pressurize fuel system. Turn outboard OFF and inspect all fuel system components for leaks.

Install lower engine covers and air silencer.

IMPORTANT: Install service injector data (3.5 in. floppy disk) by using the Injector Replacement Utility of the Evinrude Diagnostics Software program. Use the diagnostic program to confirm that all injectors are positioned properly.
Fuel Manifolds

Removal
Disconnect the battery cables at the battery.

Relieve fuel system pressure. Refer to Relieving Fuel System Pressure on p. 168.

Remove fuel manifold retainer screws and remove retainer from fuel injector.

Dishtcet fuel manifold fittings from fuel injector ports.

Remove clamps and disconnect the fuel manifolds as follows:
• Fuel supply manifold to circulation pump
• Fuel return manifold to vapor separator

Remove any tie straps used to secure manifold(s) in place, then remove the manifold assembly(s).

Installation
Installation is essentially the reverse of removal. Pay close attention when performing the following additional tasks.

Connect battery cables.

Start outboard briefly to pressurize fuel system. Turn outboard OFF and inspect all fuel system components for leaks. Repair any fuel leaks.

Install lower engine covers and air silencer.

INTAKE MANIFOLD

Removal
Disconnect throttle linkage. Remove throttle body screws and throttle body assembly.

Remove gasket from throttle body.

Remove screws and reed plate assembly from the cylinder/crankcase assembly.

Disassembly
Visually inspect reed valve assemblies. For disassembly of the reed valve assembly, see Inspection on p. 175.

All reed plate assembly and reed valve assemblies must be cleaned prior to reassembly. DO NOT use strong carburetor cleaner or the hot soaking tank method for cleaning.
Remove the reed valve retainer screws and remove the assembly.

Use caution to prevent damaging reed valve assemblies.

Inspection

IMPORTANT: DO NOT disassemble reed valve assemblies unless reed plate seats, reed valves, or reed stops are damaged, corroded, or contaminated with debris. Damaged reed plates are not serviceable and are replaced as an assembly.

Inspect the intake manifold. All gasket surfaces must be cleaned, smooth, and free of nicks. Use a machinist’s straight-edge to check flatness in all directions. Surface must be flat, ±0.004 in. (0.10 mm).

Inspect the leaf plate assemblies for damage or contamination:
- Leaf plates must not be distorted.
- Leaf valve must not be cracked or chipped.
- Leaf plate stops must not be distorted or loose.
- Leaf plate assemblies must be clean.

Assembly

Remove old adhesive from reed valve retaining screws.

Install gasket on reed plate assembly. DO NOT use sealer on the gasket.
Prime the threads with *Locquic Primer* and let dry. Apply *Nut Lock* to threads. Position reed valve on reed plate and install screws. Final torque is 25 to 35 in. lbs. (2.8 to 4.0 N·m).

Installation

Position reed plate assembly on cylinder/crank-case.

Apply *Nut Lock* to screws. Install all screws.

Tighten the center screws first and expand outward. Tighten in stages. Final torque is 60 to 120 in. lbs. (7 to 14 N·m).

Position gasket on throttle body. Install throttle body on reed plate and install screws.

Tighten the center screws first and expand outward. Final torque is 60 to 120 in. lbs. (7 to 14 N·m).

Install upper main bearing vent hose and secure with tie strap.

Connect throttle linkage and electrical connectors.

Refer to **TPS Calibration** on p. 143.
TABLE OF CONTENTS

SERVICE CHART ... 178

COMPONENTS ... 179
- **OIL TANK ASSEMBLY** .. 179
- **ELECTRICAL CIRCUIT (55 V)** .. 180
- **SYSTEMCHECK LOW AND NO OIL WARNING SIGNALS** 180
- **OILING SYSTEM ELECTRICAL DIAGRAM** 181
- **CYLINDER AND CRANKCASE** ... 182
- **OIL SUPPLY AND DISTRIBUTION DIAGRAM** 182
- **OIL RECYCULATION SYSTEM** ... 183
- **RECYCULATION HOSE DIAGRAM** 183

PRIMING ... 184

OILING RATES .. 184
- **OIL INJECTION RATE** .. 184
- **BREAK-IN OILING** .. 184

OILING SYSTEM TESTS ... 185
- **OIL INJECTION PUMP STATIC TEST** 185
- **OIL INJECTION PUMP VOLTAGE TEST** 185
- **OIL INJECTION PUMP CIRCUIT RESISTANCE TEST** 186
- **OIL FLOW TESTS** ... 186
- **OIL-TO-FUEL CHECK VALVE TEST** 188
- **LOW OIL SENDING UNIT TEST** ... 188
- **NO OIL WARNING TEST** .. 188

OIL COMPONENT SERVICING ... 189
- **OIL DISTRIBUTION HOSES** ... 189
- **OIL TANK ASSEMBLY** .. 190
SERVICE CHART

A Triple-Guard Grease
B Gasket Sealing Compound
C Adhesive 847
E Red Ultra Lock
F Blue Nut Lock
H Outboard Engine Lubricant
S STP Oil Treatment

60 - 84 in lbs. (6.8 - 9.5 N·m)

30 - 42 in lbs. (3.4 - 4.8 N·m)
COMPONENTS

The oiling system consists of the following components:

- Oil tank and injection pump and manifold assembly (includes distribution manifold and pressure switch)
- Oil pressure switch
- SystemCheck LOW and NO OIL warning signals
- Cylinder and crankcase
- Oil recirculation system

Oil Tank Assembly

The oil tank is powerhead mounted and should be properly monitored for oil level and condition. The oil injection pump and manifold assembly distributes the oil supplied by the oil injection pump. A pressure-sensing switch monitors oil injection function.

Capacity

- 75 – 90 HP models – 3 qt. (2.8 l)

Oil injection pump and manifold assembly and fill cap are included with oil tank assembly.

Oil Injection Pump and Manifold Assembly Components

- Oil injection pump and distribution manifold
- Pickup tube and filter
- Low oil sending unit
- Oil pressure switch
- Oil distribution hoses

Oil Pressure Switch

The oil pressure switch is located in the oil distribution manifold and reacts to changes in oil manifold pressure. The EMM supplies and monitors electrical current to the switch. The switch opens or closes based on oil distribution manifold pressures. See NO OIL Warning Test on p. 188.

Service Codes

Code 38

A lack of oil pressure in the oil distribution manifold, or an inoperative pressure switch activates service code 38 (oil pressure feedback not detected for 255 cycles) and the EMM:

<table>
<thead>
<tr>
<th>Code 38</th>
<th>Activates the SystemCheck "NO OIL" light</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Activates EMM LED: “NO OIL/OVERHEAT”</td>
</tr>
<tr>
<td></td>
<td>Stores a service code 38</td>
</tr>
<tr>
<td></td>
<td>Initiates S.A.F.E.</td>
</tr>
</tbody>
</table>
OILING SYSTEM COMPONENTS

Code 32
A constantly closed oil pressure switch (EMM does not detect oil pressure changes for 255 cycles) activates service code 32 and the EMM:

- Initiates EMM LED: “SENSOR FAULT”
- Stores a service code 32

Electrical Circuit (55 V)
The oil injector is powered by the 55 V electrical circuit. The EMM controls injection pump operation by opening and closing the circuit’s ground.

Circuit components:
- EMM, injector control function
- 55 V electrical system: stator, EMM
- Main wire harness
- EMM injector ground circuits

Refer to Oiling System Electrical Diagram on p. 181.

Service Code 34
The EMM monitors the oil injection pump’s electrical circuit. If circuit voltage is beyond the specified range, the EMM:

- Activates S.A.F.E.
- Stores a service code 34
- Initiates EMM NO OIL / OVERHEAT LED
- Initiates the SystemCheck NO OIL light

SystemCheck LOW and NO OIL Warning Signals

LOW OIL Warning
A sending unit of the oil injection pump and manifold assembly monitors the oil level in the tank. This sending unit is designed to activate the SystemCheck “LOW OIL” light when the oil level falls below one-quarter capacity.

Approximate oil reserve at Low Oil activation:
- 75 – 90 HP models – 0.61 qt. (0.57 l)

IMPORTANT: This warning circuit does NOT interact with the EMM. If the oil tank is run out of oil, the EMM will react to the oil pressure switch input, initiate S.A.F.E. and activate the SystemCheck “NO OIL” light.

NO OIL Warning
The EMM monitors the electrical circuit of the oil pressure switch. If the switch or circuit fails or if there is a lack of oil pressure in the oil distribution manifold, the EMM initiates EMM NO OIL / OVERHEAT LED and/or the SystemCheck “NO OIL” light.

Refer to External Sensors on p. 88.
Oiling System Electrical Diagram

1. Stator
2. Stator output (55 V)
3. Alternator grounds (BLACK)
4. Injector circuit grounds (BLACK)
5. Alternator output, WHITE / RED wires (55 V)
6. Capacitor (55 V)
7. Main harness ground (BLACK)
8. 55 V to injection pump (WHITE / RED)
9. EMM oil injector pump control (BLUE)
10. Oil injection pump
11. EMM to switch (TAN / WHITE)
12. Oil pressure switch
13. Low oil switch to SystemCheck gauge (TAN/BLACK)
14. Oil level sending unit
Cylinder and Crankcase

Each cylinder has a pressed-in fitting at the front of the cylinder/crankcase which is connected to an oil distribution hose. Lubrication for each cylinder is injected through these fittings. Additionally, one oil distribution hose is routed to a check valve that is connected to the incoming fuel supply hose. This provides a limited amount of oil to keep injector nozzles clean.

Oil Supply and Distribution Diagram

75 – 90 HP MODELS

1. Oil tank
2. Oil inlet filter
3. Oil pick-up
4. Oil injection pump
5. Oil distribution manifold
6. Oil distribution hose (cylinder 1)
7. Oil distribution hose (cylinder 2)
8. Oil distribution hose (cylinder 3)
9. Oil to fuel check valve
Oil Recirculation System
External hoses and fittings, internal cylinder/crankcase passages, and intake manifold passages are used to “recirculate” any accumulation of oil from various locations in the powerhead. The movement of oil in these “oil circuits” is controlled by check valves.

Cylinder Recirculation
Internal powerhead oil drain passages connect the intake port areas of the cylinders to circulate residual oil in the block.

External fittings and in-line check valves on each side of the cylinder block control the movement of oil from the lower cylinder port to the upper cylinder port.

Crankcase / Main Bearing Recirculation
The movement of oil through the upper main bearing, center main bearing(s), and lower main bearing is provided through internal powerhead oil drain passages, external fittings, and external in-line check valve(s) and hoses.

Lower to upper main bearing oil flow:
- Lower main bearing cavity to internal crankcase passage to external fitting, external hoses with in-line check valve to external fitting at upper main bearing, and into upper main bearing through internal crankcase passage.
- Internal crankcase passage to external fitting in crankcase cover at upper main bearing, hose routed to reed plate fitting. This circuit vents the upper main bearing cavity to promote oil flow.

Recirculation Hose Diagram
75 – 90 HP MODELS

Refer to the Recirculation Hose Diagram.
PRIMING

WARNING

Prevent injury from contact with rotating propeller; always remove propeller before running on a flushing device.

The oiling system of the outboard must be primed if the oil tank assembly is replaced, the oiling system is run out of oil, or the system is disassembled for servicing.

START outboard and run it at IDLE. Use the diagnostic software program to activate “Prime Oil.”

IMPORTANT: All clear “blue” oil distribution hoses on the powerhead should fill with oil as the air is purged from the lines. Temporarily disconnect the fuel supply hose, which will relieve pressure and help prime the oil-to-fuel hose.

Observe oil flow through the oil distribution hoses.

OILING RATES

EMM programming controls the rate of oil injection. Use engine diagnostics software to access this EMM feature.

Oil Injection Rate

The TC-W3 OIL control setting allows the outboard to be run on TC-W3 outboard lubricant. Changing to the optional XD100 OIL CONTROL setting requires the use of Evinrude XD100 outboard lubricant. Running the outboard in XD100 OIL mode can reduce oil consumption by approximately one third. See Oil Control on p. 98.

Two oil programming labels are provided to identify EMM oil programming. Install the correct label to alert user to specific oil requirements.

Break-in Oiling

The Break-in OIL setting doubles the oiling ratio for the first two hours of operation, above 2000 RPM. See Oil Control on p. 98.
OILING SYSTEM TESTS

IMPORTANT: Always perform visual inspections to identify oiling system leaks. Make sure the oil tank is filled and oil supply is not contaminated.

Oil Injection Pump Static Test

IMPORTANT: Static tests are performed with the outboard not running.

Use the *Evinrude* Diagnostics Software program to activate *Oil Injector* test. This initiates the *EMM* control function for the oil injection pump. Monitor the voltage on the oil injector circuit at pin 2 (blue wire) of oil tank connector.

IMPORTANT: Oil injection pump will not activate on 12 V. Use voltmeter to check circuit voltage.

Results:
- Slightly less than 12 V is acceptable with outboard not running. See *Oil Injection Pump Circuit Resistance Test*.
- No voltage reading, proceed to **STEP 2**.

STEP 2

Check voltage on the 55 V alternator output wires of the *EMM*. The alternator output wires (white/red) are terminals 12, 13, 14 of the *EMM* J2 connector.

Results:
- Proper voltage reading, repair or replace faulty wire harness or connection.
- No or low voltage, check connection from stator to *EMM* and *EMM* J2 connection. Repair faulty connection or refer to *Stator Tests* on p. 129 for alternator testing procedures.

STEP 3

Monitor the voltage on the oil injector circuit at pin 2 (blue wire) of oil tank connector with outboard running at 1500 RPM.

Use Electrical Test Probe Kit, P/N 342677, and digital volt meter calibrated to a scale that reads 55 V (DC). Connect positive meter lead to pin 2 and negative meter lead to ground.

Oil Injection Pump Voltage Test

Acceptable voltage readings:
- Key switch ON: slightly less than 12 V
- Outboard running: 55 V

STEP 1

Check voltage at pin 1 (white/red wire) of oil tank electrical connector with key switch ON.

Voltage reading should be approximately 55 V, and drop approximately 5 V as *EMM* actuates oil injection pump.
Oil Injection Pump Circuit Resistance Test

Disconnect the battery cables at the battery.

Disconnect oil tank electrical connector from engine wire harness connector.

Calibrate ohmmeter to the LOW OHMS scale and measure the resistance between pin 1 and 2 of the oil tank connector.

<table>
<thead>
<tr>
<th>Oil Injection Pump Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 Ω</td>
</tr>
</tbody>
</table>

Results:
- If injection pump resistance reading is approximately 22 Ω, injection pump winding is good.
- An infinite reading (∞) indicates an open circuit. Isolate the faulty wiring, connection, or injection pump winding. Repair faulty wiring or replace oil tank assembly for faulty pump.
- For higher than expected reading, isolate faulty component or repair faulty wiring.

IMPORTANT: The oil injection pump electrical circuit includes EMM alternator output, the engine wire harness, the injection pump winding and connectors, and the oil injector control circuit of the EMM. Check continuity of all wiring and connections.

Oil Flow Tests

Running

With outboard not running, remove oil distribution hose from fitting at oil distribution manifold. Do not lose the brass hose support. Allow oil in hose to drain, allowing air to enter the hose.

Reinstall hose into manifold.

IMPORTANT: Make sure hose support is in hose and hose is fully inserted into manifold. Refer to Oil Distribution Hoses on p. 189. Temporarily disconnect the fuel supply hose to relieve pressure in fuel supply hose to allow the oil-to-fuel distribution hose to prime. All clear “blue” oil distribution hoses on the powerhead should fill with oil as the air is purged from the lines.

Run the outboard at 1500 RPM. Monitor air bubbles in oil distribution hose(s) to confirm oil movement. Once oil movement is confirmed, use the Evinrude Diagnostics Software program to initiate the “Prime Oil” function.
OILING SYSTEM
OILING SYSTEM TESTS

Results:
• Oil movement is confirmed, compare to oil flow of other distribution hoses.
• No oil flow, compare to oil flow at other distribution hoses. One or more hoses fail to flow oil, check for kinked or restricted hose or fittings before replacing oil tank assembly.

Injector Fittings to Cylinder Block
Confirm that the oil injection fittings of the cylinder block allow fluid to move into the cylinder sleeve.

Remove oil distribution hose from fitting or oil distribution manifold. Connect Syringe, P/N 346936, filled with isopropyl alcohol. Force fluid through hose and fitting.

Temporarily install a 12 in. (30 cm) length of oil hose, P/N 776892.

Use the Oil Injector static test of the Evinrude Diagnostics Software program to activate oil injection pump.

IMPORTANT: Disconnect CPS electrical connector to prevent engine from starting.

Crank outboard momentarily to boost voltage to oil injection pump. Monitor oil in hose to confirm oil movement while injection pump is activated.

Results:
• Oil movement is confirmed, compare to oil flow of other distribution fittings.
• No oil flow, compare to oil flow at other distribution fittings. If one or more fittings fail to flow oil, replace oil tank assembly (oil pump and manifold).
OILING SYSTEM
OILING SYSTEM TESTS

Oil-to-Fuel Check Valve Test
The oil-to-fuel check valve controls oil that flows into the outboard fuel system. Oil is injected into the incoming fuel supply before the fuel lift pump.

IMPORTANT: Temporarily disconnect fuel supply hose to relieve pressure in the hose.

Using a marker or pen, mark the position of the oil hose, relative to the hose retaining mechanism, before removing hose.

Release the hose by depressing outer ring of the retaining mechanism.

Remove oil-to-fuel check valve.

Connect a 30 psi (207 kPa) pressure tester to the inlet side of the check valve. Apply pressure to the check valve. The check valve should not require more than 3 psi (21 kPa) to open.

Connect a vacuum tester to the outlet side of the check valve. Apply vacuum to the check valve. The valve should not require more than 6 in. Hg to open.

Install check valve and secure with clamp.

Make sure the hose support is in the distribution hose and insert oil-to-fuel distribution hose into check valve to proper depth. Run outboard and check for leaks. Repair all leaks.

LOW OIL Sending Unit Test
Remove the oil from the oil tank, and turn the key switch ON. The LOW OIL light of the SystemCheck gauge should activate. Once the warning has been verified, turn the key switch ON and refill the oil tank. Confirm that the LOW OIL warning stops as the oil level exceeds one-quarter of oil tank’s capacity.

NO OIL Warning Test

STEP 1
Monitor the voltage on the oil pressure switch circuit at pin 5 (tan/white wire) of oil tank connector with outboard running at 1500 RPM.

Use Electrical Test Probe Kit, P/N 342677, and digital volt meter calibrated to scale that reads 12 V (DC). Connect positive meter lead to pin 5 and negative meter lead to ground.

Voltage reading should be approximately 13 V, and drop approximately 2 V as oil pressure switch closes and connects the circuit to ground.

STEP 2
Temporarily disconnect the tan/white wire from the oil pressure switch connector. Run the outboard at IDLE. The SystemCheck NO OIL warning should activate (10 seconds), EMM LED should light, and Code 38 should be stored in the EMM.

Turn the key switch OFF and reconnect tan/white wire into electrical plug. START the outboard. The NO OIL warning should not activate.

Results:
- NO OIL warning activates, EMM LED lights, and Code 38 is stored: the system is functional.
- NO OIL light activates but the horn does not sound: faulty horn, horn wiring, or gauge.
- No warning at all: check electrical circuit (tan/white wire) for oil pressure switch and oil tank connector ground circuits.
OIL COMPONENT SERVICING

IMPORTANT: Access to certain oil distribution hoses requires removal of various engine components. Refer to service information in the various sections of this manual for additional information related to the removal and installation of specific components. DO NOT disassemble or replace any oiling system components until you are familiar with the entire OILING SYSTEM section.

Oil Distribution Hoses

The oil distribution hoses to each cylinder MUST be the same length. DO NOT alter the length of any hoses.

Manifold to cylinder block fitting hoses and manifold to oil to fuel check valve hose:
• 23 in. (584 mm)

Removal

The oil distribution manifold has oil hose retainer mechanisms incorporated into the design.

Use a pen or marker to mark the position of the oil hose relative to the retaining mechanism.

Release the hose by depressing the outer ring of the hose retaining mechanism.

Once hose is removed from the manifold, make sure hose support is in end of the hose.

WARNING

To prevent accidental starting while servicing, disconnect the battery cables at the battery.

IMPORTANT: DO NOT reinsert the hose into manifold without the hose support.

Be sure the hose is fully inserted into manifold. The insertion depth of hose into the manifold is 5/8 in. (16 mm). Visually inspect for hose supports. Hose supports are seen through hoses.
OILING SYSTEM
OIL COMPONENT SERVICING

Oil Tank Assembly

Removal
Disconnect the battery cables at the battery.

Remove engine covers and air silencer.

Disconnect the electrical connector to the oil injection pump and manifold assembly.

IMPORTANT: Note oil distribution hose routings before proceeding with disassembly. Clamps and protective sleeves are used to position and protect the oil distribution hoses.

Remove oil distribution hoses from the crankcase fittings and the oil-to-fuel check valve.

Remove oil tank retaining screws and nut.

Installation

Position oil tank assembly on powerhead. Clean mounting screws and apply *Nut Lock* to threads of screws. Install screws and torque to 30 to 42 in. lbs. (3.4 to 4.8 N·m). Install nut and torque to 30 to 42 in. lbs. (3.4 to 4.8 N·m).

Route oil distribution hoses from the oil distribution manifold to the crankcase oil delivery fittings. Install protective sleeves and route hoses as they were prior to removal. See *Oil Supply and Distribution Diagram* on p. 182. Connect oil hoses to crankcase fittings and fasten with tie straps.

Run outboard and check for leaks. Use the *Evinrude* Diagnostics Software program to activate “Oil Prime.” Check oil flow through oil distribution hoses. Check oil system operation and routing of oil system hoses.

Repair any oil leaks and kinked or misrouted hoses. Reinstall engine covers and air silencer.
TABLE OF CONTENTS

HOSE ROUTING AND WATER FLOW DIAGRAM ... 192

ENGINE TEMPERATURE CHECK .. 193
 - SOFTWARE METHOD .. 193
 - PYROMETER METHOD ... 193
 - IDLE OPERATING TEMPERATURE TROUBLESHOOTING (BELOW RANGE) 194

COMPONENTS ... 195
 - GENERAL DESCRIPTION ... 195
 - WATER PUMP AND INTAKES ... 195
 - WATER SUPPLY TUBE ... 195
 - ADAPTER HOUSING .. 196
 - PRESSURE RELIEF VALVE .. 196
 - THERMOSTAT ... 197
 - BLOCK VENTING ... 197
 - WATER PRESSURE CONNECTION ... 197

OPERATION .. 198
 - CYLINDER BLOCK / CYLINDER HEAD COOLING 198
 - EMM AND VAPOR SEPARATOR COOLING .. 198

THERMOSTAT SERVICING .. 199
 - DISASSEMBLY .. 199
 - INSPECTION .. 199
 - ASSEMBLY ... 199

PRESSURE RELIEF VALVE SERVICING .. 200
 - DISASSEMBLY .. 200
 - INSPECTION .. 200
 - ASSEMBLY ... 200
1. Water intake screens
2. Water pump
3. Water tube
4. Adapter housing
5. Cylinder block
6. Pressure relief valve
7. Thermostat
8. Water supply to EMM
9. Water supply, EMM to vapor separator
10. Overboard indicator, outgoing water from vapor separator.
ENGINE TEMPERATURE CHECK

IMPORTANT: The engine temperatures listed below are based on an intake water temperature of 70°F ± 10°F (21°C ± 3°C).

Install correct test propeller and place outboard in a test tank or in the water. Start outboard and run at 3000 RPM in FORWARD gear for at least five minutes. Remember, running outboards at high speeds in test tanks may disrupt water flow to gearcase water intakes. Make sure the outboard has adequate water flow.

Reduce outboard speed and run engine at IDLE for five minutes. Check IDLE operating temperature.

Increase speed to 5000 RPM and check temperature.

If engine temperatures are not within range, troubleshoot cooling system.

If engine temperature tests within range, but the SystemCheck gauge indicates a “WATER TEMP” warning, refer to WATER TEMP/ HOT Circuit Test on p. 133.

Software Method

Use the Evinrude Diagnostics Software program to monitor engine temperature.

![Engine Monitor Screen](image)

Typical temperature sensor readings at IDLE speed should be 155°F ± 5°F (68.3°C ± 3°C).

Typical temperature sensor readings at WOT speed should be 160°F ± 40°F (71°C ± 22°C).

At 5000 RPM, operating temperature must not exceed 212°F (100°C).

Pyrometer Method

Use a Temperature Gun, P/N 772018, or a digital pyrometer to measure the outboard’s operating temperatures.

Measure temperature of the thermostat housing at the top of cylinder head.

Typical pyrometer readings at IDLE speed should be 145°F ± 10°F (63°C ± 6°C).

Typical pyrometer readings at WOT speed should be 150°F ± 40°F (66°C ± 22°C).

CAUTION

When servicing the propeller, always shift the outboard to NEUTRAL, turn the key switch OFF, and disconnect the battery cables at the battery.

CAUTION

When servicing the propeller, always shift the outboard to NEUTRAL, turn the key switch OFF, and disconnect the battery cables at the battery.
COOLING SYSTEM
ENGINE TEMPERATURE CHECK

IMPORTANT: If you get low or inaccurate readings with a digital pyrometer, coat the probe location with *Thermal Joint Compound*, P/N 322170.

IMPORTANT: Digital pyrometer or temperature gun measurements may be slightly lower than software temperature readings.

Idle Operating Temperature Troubleshooting (Below Range)

If engine IDLE temperature is below operating range 155°F ± 5°F (68.3°C ± 3°C), check thermostat and pressure relief valve operation.

Thermostat Inspection

Check position of thermostat seal and how thermostat seals against cylinder head. Seal must be properly fitted to flange of thermostat.

Check thermostat for cracks, heat damage, or signs of corrosion. Check for proper operation. Thermostat opens at 143°F (62°C).

Refer to **THERMOSTAT SERVICING** on p. 199.

Pressure Relief Valve Inspection

The pressure relief valve should be closed at IDLE speed. Water should not flow past the plunger and seal.

If IDLE temperature is too low, check pressure relief valve plunger and seal for damage or debris that could prevent the valve from closing completely.

If IDLE temperature is still below operating range, replace pressure relief valve assembly and plunger seal.

To test pressure relief valve operation, monitor temperature at the thermostat housing with Temperature Gun, P/N 772018, or digital pyrometer.

Confirm normal IDLE operating temperature.

Slowly increase engine speed from IDLE, up through 2500 RPM.

Engine temperature should decrease from normal IDLE temperatures as pressure relief valve opens. Valve should open between 1800-2200 RPM.

If temperature decreases at a lower RPM, replace pressure relief valve assembly.

Refer to **PRESSURE RELIEF VALVE SERVICING** on p. 200.
COMPONENTS

General Description
All models use a two-stage cooling system design. The cooling system is dependent on water pump pressure and controlled by thermostat and pressure relief valve operation.

IMPORTANT: Restricted or inadequate water flow through the outboard reduces cooling system performance and may lead to severe powerhead damage.

Water Pump and Intakes
External water intakes mounted in the gearcase housing collect water and must supply the inlet side of the water pump with an unrestricted and unaerated water supply. Water is drawn into the water pump through a hole in the lower plate of the water pump assembly. All cooling water to the powerhead is provided by the water pump.

• A nylon wedge (impeller key) is used to engage the impeller bushing and driveshaft.
• The nylon impeller housing with stainless steel liner must seal against a separate stainless steel water pump plate.
• The pump operates as a positive displacement pump at LOW speeds (below 1500 RPM) and as a centrifugal pump at HIGHER speeds.
• The bottom plate MUST seal to gearcase housing.

Refer to WATER PUMP on p. 262 for water pump servicing.

Water Supply Tube
The water pump outlet connects with the water supply tube located in the outboard’s midsection. Grommets seal the water tube to the water pump housing and the adaptor housing. The water tube fastens to the base of the adapter housing with a retainer plate and screws.

Water supplied to the water tube provides all cooling water to the adapter housing and cylinder block.
Adapter Housing

- Adapts the cylinder/crankcase assembly (powerhead) to the megaphone and exhaust housings and the water tube.
- Provides water passages which route incoming and outgoing cooling water.
- Provides exhaust passages which connect to the inner exhaust of the outboard’s midsection.

Pressure Relief Valve

A pressure relief valve is used to control water flow and operating temperature at higher speeds (above approximately 2000 RPM). Pressure relief valve activates or “blows-off the seat” as water pressure increases. Spring tension is used to set the “blow off” pressure.

Overheating: A restricted or faulty valve typically results in HIGH SPEED overheating.

Overcooling: Debris may prevent the valve from closing completely.

The pressure relief valve diaphragm allows the valve plunger to lift off the seat completely. This improves the self cleaning properties of the pressure relief valve.
Thermostat
The thermostat is used to control water flow and operating temperature at slower speeds (below 2000 RPM).

Overheating: A restricted or faulty thermostat typically results in LOW SPEED overheating.

Overcooling: Debris may prevent the thermostat from closing completely.

Refer to THERMOSTAT SERVICING on p. 199.

Block Venting
A fitting and hose connected to the top of the exhaust cover allows the constant movement of water and/or air from the block. Circulated water flows through the EMM and vapor separator before exiting through the overboard indicator.

Water Pressure Connection
Fitting and hose for accessory water pressure gauge is connected at top of cylinder block adjacent to the pressure valve housing.

<table>
<thead>
<tr>
<th>Model</th>
<th>Water Pressure@ 5000 RPM (Minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 – 90 HP</td>
<td>16 psi</td>
</tr>
</tbody>
</table>
OPERATION

Cylinder Block / Cylinder Head Cooling

The thermostat is located in the top of the cylinder head. A separate pressure valve is positioned in the top of the cylinder block adjacent to the exhaust cover. The thermostat and pressure valve control the flow of water entering the vertical water passages of the cylinder head.

The controlled discharge of water from the thermostat and/or the pressure relief valve allows water from the top of the cylinder block to enter the cylinder head. Water flows down through the cylinder head and exits at the bottom of the cylinder head. The water outlet of cylinder head aligns with a water passage at the bottom of the cylinder block. Circulated water flows through the outlet passage of the block to the adapter/exhaust housing and then out of the outboard.

At low speed, temperature is thermostatically controlled. The spring loaded thermostat remains on a seat in the cylinder head. Water flows through the thermostat only when it is open. The thermostat opens at approximately 143°F (60°C).

At higher speeds, temperature is water pressure controlled. The pressure relief valve spring tension provides the proper “blow off” pressure. The valve lifts from the seat in the cylinder block at approximately 2000 RPM. Cooling water flows around the valve to achieve high speed cooling.

EMM and Vapor Separator Cooling

Cooling water is routed through the EMM water cavity. Cooling of the EMM minimizes the temperatures of internal components.

Cooling water is routed to the water inlet fitting of the vapor separator water cavity. Cooling the vapor separator fuel chamber minimizes fuel vaporization.

Cooling water from the EMM and vapor separator exits through the overboard indicator. See HOSE ROUTING AND WATER FLOW DIAGRAM on p. 192.

IMPORTANT: Improper EMM cooling will activate service codes (code 29 and 25) and initiate S.A.F.E. or SHUTDOWN. Refer to EMM DIAGNOSTICS on p. 93 for specific service code information.
THERMOSTAT SERVICING

Disassembly
Remove the thermostat cover and O-ring from cylinder head.

Remove spring, thermostat, and gasket.

Remove the cylinder head if cylinder head seal requires replacement. Place new seal in the cylinder head with side marked “TO CYL HEAD” facing thermostat.

Inspection
Inspect all components for cracks, heat damage, or signs of corrosion. Replace damaged components. Clean debris from all housings and thermostat components.

Assembly
Assembly is essentially the reverse of disassembly. Pay close attention when performing the following additional tasks.

Coat threads of cylinder head thermostat cover with Gasket Sealing Compound and install new O-ring. Install and tighten the cover to a torque of 120 to 144 in. lbs. (13.5 to 16 N·m).
PRESSURE RELIEF VALVE SERVICING

The pressure relief valve assembly should be serviced at the same time as the thermostat.

Disassembly

Remove pressure relief valve cover retaining screws.

Remove the pressure relief valve assembly.

Inspection

Inspect all components for cracks, heat damage, or signs of corrosion. Replace damaged components. Clean all debris from pressure relief valve components.

Assembly

Assembly is essentially the reverse of disassembly. Assemble components as shown above.

Torque cover screws to 60 to 84 in. lbs. (7 to 9.5 N·m).
TABLE OF CONTENTS

SERVICE CHART ... 202
GENERAL ... 204
 CYLINDER COMPRESSION TESTING ... 204
 RETAINING RING PLIERS .. 204
REMOVAL ... 205
DISASSEMBLY ... 207
 GENERAL ... 207
 SHIFT LINKAGE .. 207
 THROTTLE LINKAGE .. 207
 CRANKCASE .. 208
 CYLINDER HEAD .. 209
 CONNECTING RODS AND PISTONS .. 209
 CRANKSHAFT .. 210
CLEANING ... 212
INSPECTION ... 213
 CYLINDER HEAD .. 213
 CRANKSHAFT .. 214
 CYLINDER BORE ... 214
 PISTONS ... 214
 PISTON RINGS ... 214
 BEARINGS ... 215
ASSEMBLY ... 216
 CRANKSHAFT .. 216
 PISTONS AND CONNECTING RODS ... 218
 CYLINDER HEAD .. 220
 CRANKSHAFT AND CONNECTING RODS 221
 CRANKCASE .. 224
 SHIFT LINKAGE .. 226
 THROTTLE LINKAGE .. 227
 GENERAL ... 227
UPPER MOUNT SERVICING ... 228
 REMOVAL ... 228
 INSTALLATION ... 228
INSTALLATION ... 229
POWERHEAD VIEWS .. 233
 PORT SHORT BLOCK .. 233
 STARBOARD SHORT BLOCK ... 233
 PORT DRESSED POWERHEAD ... 234
 STARBOARD DRESSED POWERHEAD 234
 FRONT ... 235
 REAR ... 236
 TOP ... 237
NOTES ... 238
POWERHEAD

SERVICE CHART

SERVICE CHART

- **F**: 60-84 in. lbs. (7-9.5 N·m)
- **B**: 120-144 in. lbs. (13.5-16 N·m)
- **H**: 168-192 in. lbs. (19-21.5 N·m)
- **J**: 15-30 Ft. lbs. (20-41 N·m)
- **M**: Apply to water passages
- **Q**: Apply to crankcase mating flange
- **A**: Triple-Guard Grease
- **B**: Gasket Sealing Compound
- **D**: Moly Lube
- **E**: Red Ultra Lock
- **F**: Blue Nut Lock
- **G**: Needle Bearing Grease
- **H**: Outboard Lubricant
- **J**: Thermal Grease
- **M**: RTV Sealant
- **P**: Permatex No. 2
- **Q**: Gel Seal II
- **Y**: Extreme Pressure Grease

IMPORTANT See Spark Plug Indexing Procedure

B 60-84 in. lbs. (7-9.5 N·m)

H 26-30 Ft. lbs. (35-41 N·m)

F 60-84 in. lbs. (7-9.5 N·m)

H 168-192 in. lbs. (19-21.5 N·m)
H 30-32 Ft. lbs. (41-43 N·m) Must have alignment tool

A Triple-Guard Grease
B Gasket Sealing Compound
D Moly Lube
E Red Ultra Lock
F Blue Nut Lock
G Needle Bearing Grease
H Outboard Lubricant
P Permatex No. 2
Q Gel Seal II
Y Extreme Pressure Grease

Y 15-20 Ft. lbs. (20-27 N·m)

110-130 Ft. lbs. (149-176 N·m)
GENERAL

Cylinder Compression Testing
Start and run outboard until it achieves operating temperature, then shut OFF.

Disconnect crankshaft position sensor (CPS) connector. Remove all spark plugs.

Advance throttle linkage to WOT.

Install compression tester’s hose attachment into spark plug hole (14 mm threads).

While cranking outboard with starter, note maximum pressure reading on gauge. Repeat procedure for each cylinder.

If engine shows a variation greater than 15 psi (100 kPa) between cylinders, check for:
• damaged cylinder head
• damaged pistons
• broken or stuck piston rings
• scored cylinder walls

Return throttle to idle position and reconnect CPS connector. Replace spark plugs.

Refer to Spark Plug Indexing on p. 144.
REMOVAL

WARNING

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure. Refer to Relieving Fuel System Pressure.

To prevent accidental starting while servicing, disconnect the battery cables at the battery.

IMPORTANT: Reinstall fasteners, nuts, and bolts in their holes as engine components are removed. This will simplify identification and assembly.

Loosen screw and remove the air silencer.

Remove lower engine cover screws, including one at inside, top rear.

Loosen port side cover slightly, and disconnect trim/tilt switch connector. Then, remove port and starboard covers.

Disconnect power trim connectors.

Remove screw and washer from shift rod lever to release the lower shift rod.
Remove six retaining screws and exhaust relief muffler.

Install Lifting Fixture, P/N 396748, on flywheel and seat the three screws completely.

IMPORTANT: Be sure to use only the 1 1/8 in. (short) screws, P/N 398067, included with the tool to avoid damage to electronic components under the flywheel.

Fasten appropriate chain hook to eye of tool and support weight of powerhead with hoist.

Remove the small powerhead screw at rear.

Remove remaining four small powerhead screws, six large powerhead screws, and the upper mount screws.

Use a suitable tool to carefully separate the powerhead from exhaust housing.
DISASSEMBLY

General
Remove the electric starter and solenoid. Refer to Starter Removal on p. 145.

Remove the oil tank and oil injection hoses. Refer to Oil Tank Assembly on p. 190.

Remove the EMM, wiring harness assembly, flywheel, and stator. Refer to ELECTRICAL AND IGNITION and ENGINE MANAGEMENT MODULE (EMM) sections.

Remove fuel pump assemblies and fuel injector/coil assemblies. Refer to FUEL SYSTEM section.

IMPORTANT: Mark injectors for proper cylinder location before removal. All injectors must be reinstalled in their original location. Improper injector installation can result in powerhead failure.

Shift Linkage
The shift linkage can be removed as an assembly. First, remove the shift lever screw.

Next, remove the set screw from the shift rod lever. The shift rod lever will slide off the shaft.

Shift Linkage

Remove throttle lever screw and throttle return lever screw.

Throttle Linkage
Crankcase

Remove the throttle body and reed plate assemblies. Refer to INTAKE MANIFOLD on p. 174.

Remove pressure valve assembly. Refer to PRESSURE RELIEF VALVE SERVICING on p. 200.

Disconnect crankcase and block-to-block oil recirculating hoses.

Using a 1/8 in. diameter pin punch, push crankcase taper pin toward the front side of the engine.

Remove screws and one double-ended stud and remove exhaust side water cover.

Loosen in stages and remove the main bearing nuts and washers.

WARNING

Wear safety glasses to avoid injury.
Separate crankcase and cylinder block. It may be necessary to tap on crankshaft with a rawhide or rubber mallet to loosen.

Cylinder Head

Remove thermostat cover and thermostat assembly. Refer to THERMOSTAT SERVICING on p. 199.

Loosen in stages and remove cylinder head retaining screws. Remove the cylinder head. Discard thermostat seal and O-rings.

Connecting Rods and Pistons

Use a permanent marker to identify each connecting rod cap, connecting rod, and piston by cylinder number. Number 1 is closest to the flywheel.

Use Torquing Socket, P/N 331638, to loosen in stages the rod cap retaining screws. DO NOT remove the screws.

Using one hand to support the piston, remove the rod cap screws with your other hand. Remove each piston and rod assembly.
POWERHEAD DISASSEMBLY

IMPORTANT: Reattach each rod cap to its rod as soon as the piston is removed. Each cap is unique and can only be installed on its mated rod. Do not allow rod to contact inside surface of cylinder or crankshaft.

IMPORTANT: Identify all internal components so that if reused, they can be reinstalled in their original positions.

Repeat steps for each remaining piston and connecting rod.

Use an appropriate ring expander to remove all piston rings from pistons. Discard the rings.

Use Retaining Ring Pliers, or equivalent, to remove wrist pin retaining rings. Discard retaining rings.

The wrist pin fit is loose on both sides. Push the wrist pin through to free the piston from the connecting rod. If necessary, use Wrist Pin Pressing Tool, P/N 326356, to remove the wrist pin bearing.

Be careful not to lose any of the 28 needle bearings or the two wrist pin washers. If any of the bearings are worn or lost, replace all 28 bearings during reassembly.

Crankshaft

Carefully lift crankshaft straight up and remove from crankcase.

Remove upper seal from crankshaft. Discard the seal. A new upper seal must be installed on assembly.
1. **Upper oil seal**
2. **Upper main bearing**

Remove the upper main bearing.

To remove the housing seal, use a punch as shown. Discard seal.

3. **Punch**

Remove the lower bearing seal housing.

Inspect housing and replace if necessary.

Remove O-ring from crankshaft sleeve and inspect it. Replace the O-ring if it is not in good condition.

Inspect the crankshaft sleeve and replace if necessary. To remove the sleeve, use Slide Hammer, P/N 432128, and Large Puller Jaws, P/N 432129.
Remove the lower main bearing only if it needs to be replaced. Use external retaining ring pliers to remove the lower bearing retaining ring.

Using an appropriate bearing separator, support the bearing, place separator flats against the bearing, and press off the crankshaft.

Remove center main bearings and split sleeves for inspection. DO not mix parts. Note location of bearings for reassembly.

CLEANING

IMPORTANT: Before inspecting or assembling powerhead, all internal components must be completely clean and free of contaminants.

Remove any carbon accumulation from exhaust port areas.

Remove any carbon accumulation from cylinder head combustion chambers.

If cylinder walls are glazed from extended use, use a rigid, medium grit cylinder hone to resurface walls. Use slow RPM for best oil retention and ring sealing. When finished, a cross hatch pattern of 22 to 32° should be visible in the cylinder wall. The pattern should be uniform in both directions.

IMPORTANT: To avoid piston or cylinder block damage, restore the chamfer to all port edges using a ball hone or other suitable tool.

1. Crosshatch pattern in cylinder wall
2. Chamfered port edge
Use Gel Seal and Gasket Remover to remove all traces of gaskets, adhesives, and Gel-Seal II™ sealant from the cylinder block and crankcase.

WARNING

To avoid personal injury, wear eye protection and rubber gloves when using Gel Seal and Gasket Remover.

Carefully remove any carbon accumulation from the tops and ring grooves of the piston using Engine Tuner. A ring groove cleaning tool can be made by breaking an old ring and grinding an angle on its end. Do not damage ring grooves while cleaning.

Thoroughly wash entire cylinder block and crankcase with warm, soapy water to remove all traces of contaminants.

Air dry cylinder block and crankcase. Blow all holes and passageways with compressed air.

WARNING

To avoid personal injury, wear eye protection and set compressed air pressure at less than 25 psi (172 kPa).

Cover the cylinder walls with a liberal amount of outboard lubricant to prevent corrosion.

INSPECTION

For dimensions, refer to TECHNICAL DATA on p. 18.

IMPORTANT: Before any inspection process can begin, all internal components must be completely clean and free of contaminants.

Visually inspect all parts. Check for unusual wear patterns, scuffing, or deterioration of aluminum parts, heat-related discoloration of bearings and bearing surfaces, and broken components.

Cylinder Head

Check for cylinder head warpage using a piece of bar stock or machinist’s straightedge and a feeler gauge set.

Cylinder head warpage must not exceed 0.006 in. (0.15 mm) per inch of measurement. Replace head if warpage exceeds this dimension.
Crankshaft
Measure the diameter of each crankpin and main bearing journal. The lower main bearing journal would only be measured if the bearing was removed for another reason.

Cylinder Bore
Use Cylinder Bore Gauge, P/N 771310, to inspect each cylinder bore for an out-of-round, oversize, or tapered condition. Be sure the gauge is perfectly square in the bore when measuring.

Measure each cylinder in at least two areas. Each area should be measured twice. The difference between the two measurements in each area is the cylinder out-of-round dimension.
• The cylinder must not be out-of-round by more than 0.004 in. (0.10 mm).

The dimensional difference between the two areas is cylinder taper.
• The cylinder taper must not exceed 0.002 in. (0.05 mm).

The difference between the measurements and standard bore is cylinder oversize. For dimensions, refer to TECHNICAL DATA on p. 18.
• The cylinder must not be oversized by more than 0.003 in. (0.08 mm).

IMPORTANT: If any cylinder is outside these tolerances, it must be bored oversize. It is permissible to have one or more oversize pistons in an engine.

Pistons
Visually inspect pistons for signs of abnormal wear, scuffing, cracks, or burning.

Piston Rings
For new ring sets, place each ring separately in its respective bore. Use a piston to square the ring in
the cylinder. Use a feeler gauge to measure the ring end gap.

Ring End Gap Specification

<table>
<thead>
<tr>
<th></th>
<th>Standard or Oversize rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.011 to 0.023 in. (0.28 to 0.58 mm)</td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT: Ring end gap increases approximately 0.003 in. (0.076 mm) for each 0.001 in. (0.025 mm) increase in cylinder bore diameter. DO NOT exceed cylinder oversize dimension.

Use a machinist's straightedge to check for proper ring clearance. Position piston rings on piston. Push rings into groove and hold straightedge against the side of the piston. Rings must be even or just below the surface of piston. Rings must move freely in piston ring groove.

Bearings

Inspect center main bearings and split sleeves for excess wear, nicks, or scratches. Replace if necessary.

Inspect crankshaft rod bearings for excess wear, nicks, or scratches. Replace if necessary.
POWERHEAD
ASSEMBLY

ASSEMBLY

IMPORTANT: Proceed slowly. Make no forced assemblies unless a pressing operation is called for. All internal components must be perfectly clean and lightly coated with outboard lubricant.

IMPORTANT: Use new wrist pin retaining rings, gaskets, seals, and O-rings during assembly.

Crankshaft

Oil the end of the crankshaft. Use Crankshaft Bearing/Sleeve Installer, P/N 338647, and place a new lower main bearing onto crankshaft with lettered side facing the tool. Install bearing until it seats on the crankshaft.

If the installer sticks on the sleeve after installation, thread Slide Hammer, P/N 391008, into installer and pull it off.

IMPORTANT: Inspect sleeve after installation. Sleeve must not be used if surface is damaged.

Using retaining ring pliers, install bearing retaining ring with sharp edge facing away from bearing.

Lubricate a new driveshaft O-ring and lightly lubricate crankshaft splines with *Moly Lube™*. Install O-ring in sleeve.

Lubricate the center main bearings and split sleeves with outboard lubricant and install them in their original positions. The split sleeve ring grooves must face toward driveshaft (lower) end of crankshaft when installed.

1. Groove toward driveshaft end
Lubricate upper main bearing with outboard lubricant and install on crankshaft.

Pack lip of upper oil seal with *Extreme Pressure Grease*. Place seal on crankshaft with lip toward driveshaft and enclosed face toward flywheel.

Lightly apply *Gasket Sealing Compound* on the outer rim of a new lower housing seal. Press seal into the lower seal housing so that lip of seal extends through the bottom of the housing.

Lubricate a new lower seal housing O-ring with outboard lubricant and place the O-ring on the housing.

Lubricate seal lip with *Triple-Guard* grease and place lower seal housing on crankshaft.
Pistons and Connecting Rods

IMPORTANT: It is very important that the pistons in this engine are oriented correctly.

New pistons are stamped “EXH.” This marking should be oriented to the exhaust side of the block. As another reference, the splash bowl on the dome of the piston will be located toward the flywheel and opposite the exhaust port.

IMPORTANT: It is also very important that the connecting rods are installed with the alignment dots and the diagonal oil hole facing up, toward the flywheel.

Apply *Needle Bearing Grease* to the wrist pin bearings. Install the bearings in the wrist pin bore.

Align bearings with Wrist Pin Bearing Tool, P/N 336660.
Oil the wrist pin bore and wrist pin. Push the wrist pin part way through the top wrist pin hole.

Place connecting rod, with bearings, washers, and tool, into the piston with the alignment dots facing the top of the piston.

Install wrist pin through piston and connecting rod, pushing bearing tool out through the piston.

Use Wrist Pin Cone, P/N 318600, and Driver, P/N 318599, to install new wrist pin retaining rings in each wrist pin hole. Gap of retaining ring faces up, away from notch in piston.

Repeat steps for each piston.

Installing Pistons

When all pistons and connecting rods are assembled, install piston ring sets. Be sure rings are installed in the cylinder used to test ring end gap.

IMPORTANT: Be sure gap of ring fits squarely around dowel pin.
IMPORTANT: Before continuing, make sure that all Gel-Seal II has been removed from the cylinder block and crankcase mating flanges. If traces of hardened Gel-Seal II are left, main bearings could be misaligned. Refer to CLEANING on p. 212.

Coat pistons, rings, cylinder walls, and Ring Compressor, P/N 336314 (P/N 336313 for oversize pistons), with outboard lubricant.

Center connecting rod in piston and locate piston rings on dowel pins. Place appropriate ring compressor on piston.

Slide piston and rod assembly into the correct cylinder, as marked during disassembly. Guide connecting rod through cylinder block to avoid scratching cylinder wall.

Repeat steps for each piston.

Cylinder Head

Install a new thermostat seal in cylinder head with side marked “TO CYL HEAD” facing toward thermostat.

Refer to THERMOSTAT SERVICING on p. 199 prior to installing cylinder head.

Lightly lubricate new cylinder head O-rings with Triple-Guard grease and install in cylinder head.

If it has been removed, apply soapy water to water dam and insert into block.
Apply a 1/16 in. (2 mm) bead of RTV Adhesive around each water passage on the block and cylinder head as shown.

Install cylinder head. Apply outboard lubricant to threads and install the cylinder head screws. Following sequence on cylinder head, torque all screws in stages to 168 to 192 in. lbs. (19 to 21.5 N·m).

Check that main bearing alignment dowel pins are seated in the block.

Gently lower crankshaft into place.
- Align tab on lower bearing seal housing with hole in crankcase.
- Align upper oil seal in groove.
- Locate each main bearing on its dowel pin. A mark placed on the bearing race opposite the dowel pin hole will help in the alignment process.

Crankshaft and Connecting Rods

Rotate cylinder block so crankcase mating flange is facing up.

Apply Gasket Sealing Compound to lower oil seal groove in cylinder block. DO NOT put any sealer in upper seal groove.
Lubricate each crankpin and bearing assembly with outboard lubricant. Slowly pull connecting rod up to crankshaft and install bearing halves.

IMPORTANT: Be sure alignment dot on rod cap matches dot on rod and that both dots face flywheel.

Lubricate rod cap screw threads and under screw head mating surface with a light coat of *Triple-Guard* grease. Apply outboard lubricant to screw hole threads in rod, and to screw head mating surface on cap.

Align dot on rod cap with dot on the connecting rod. Install rod cap screws finger tight (NO MORE than 6 in. lbs. (1 N·m) maximum).

IMPORTANT: Torquing the screws without Alignment Fixture, P/N 396749, or using an incorrect procedure could cause permanent damage to the connecting rod and crankshaft. To maintain accurate torque values, keep torque wrench extension length to a minimum.

Install Rod Cap Alignment Fixture, P/N 396749, before tightening rod cap screws. Align the flat marked “SET” on the rod engagement stop with the arrow on the frame. Position stop at the center setting (one line showing). Rotate adjustment knob 180° to lock in position.
Secure restraining jaw “C” and forcing jaw “D” to frame.

Apply a light coat of outboard lubricant to the corners of the connecting rod and rod cap. Place frame on connecting rod using the following procedure.

- Position frame onto the connecting rod so the contact area of the jaw is centered on the side of the rod.
- Tighten forcing screw until jaws contact connecting rod.
- Slide frame down until adjustment stop contacts the rod cap. The groove lines on the jaws must be centered on the rod/crankpin diameter.

- Tighten the forcing screw to a torque of 14 to 16 in. lbs. (1.6 to 1.8 N·m).

IMPORTANT: Make sure that frame is squarely in position and that rod and cap are aligned.

Loosen both rod cap screws one-quarter turn.

Use Torquing Socket, P/N 331638, to tighten rod cap screws in three stages:

- Apply an initial torque of 40 to 60 in. lbs. (5 to 7 N·m) to both rod cap screws.
- Torque screws to 14 to 16 ft. lbs. (19 to 21.7 N·m).
- Apply a final torque of 30 to 32 ft. lbs. (41 to 43 N·m).

Loosen forcing screw and remove the frame.
Test at least three corners of the rod and cap joint with a pick. Joint must be smooth with no step.

Repeat steps for remaining connecting rods.

Crankcase

Thoroughly clean and degrease the mating flanges of the crankcase and cylinder block with a non-petroleum based solvent, such as isopropyl alcohol or acetone, and let air dry.

IMPORTANT: DO NOT allow solvent to get on internal components. Clean only the mating flanges.

Apply *Gasket Sealing Compound* to lower oil seal groove in crankcase. DO NOT put any sealer in upper seal groove.

Use a small brush to dab a thin, even coat of *Gel-Seal II* sealant to the crankcase mating flange. The application must not come within 1/4 in. (6.4 mm) of bearings.

IMPORTANT: *Gel-Seal II* has a shelf life of at least one year when stored at room temperature. Test the *Gel-Seal II* or replace it if the age of the tube cannot be determined. Using old *Gel-Seal II* could cause crankcase air leaks.

IMPORTANT: If *Locquic Primer* is used, crankcase halves must be assembled and tightened within ten minutes after the *Gel-Seal II* has been applied.

Lower the crankcase into place. Confirm that upper oil seal and lower seal housing are seated correctly in grooves.

Apply outboard lubricant to studs and hand start nuts and washers.

When the crankcase is seated, install and firmly seat the crankcase taper pin.

Pre-torque nuts to 120 in. lbs. Start in the center and work outward in a spiral pattern.
Final torque nuts to 26 to 30 ft. lbs. (35 to 41 N·m).

Apply Nut Lock to crankcase flange screws. Install screws and torque to 60 to 84 in. lbs. (7 to 9.5 N·m).

Test that the crankshaft spins freely without binding.

IMPORTANT: After powerhead has been assembled, allow at least two hours for Gel-Seal II to cure before running outboard.

Apply Gasket Sealing Compound to both sides of a new water cover gasket. Position gasket and cover on cylinder block. Apply Nut Lock to screws and double ended stud and hand start in cover. Place star washer under J-clamp and position as shown. Torque all screws to 60 to 84 in. lbs. (7 to 9.5 N·m).

Install pressure valve assembly. Refer to PRESSURE RELIEF VALVE SERVICING on p. 200.

Connect crankcase and block-to-block recirculating hoses. Check valves must flow toward flywheel end of powerhead. Refer to POWERHEAD VIEWS on p. 233 for hose routing.

Install the throttle body and reed plate assemblies. Refer to Intake Manifold Assembly on p. 175.
Shift Linkage

Place the spring, guide, and ball of the shift detent assembly into the crankcase. Lubricate with *Triple-Guard* grease.

Lubricate shift linkage bosses at the base of the crankcase with *Triple-Guard* grease. Insert bushings into bosses.

Apply *Triple-Guard* grease to the shaft and detent of the shift lever assembly. Guide shaft through bushings in crankcase.

Install shift rod lever on the shaft and start set screw. Torque screw 60 to 84 in. lbs. (7 to 9.5 N·m).

Apply *Triple-Guard* grease to shoulder of shift lever screw and *Nut Lock* to threads. Install lever, screw, and washer on cylinder block and torque screw to 120 to 144 in. lbs. (13.5 to 16 N·m).
Throttle Linkage

Apply *Nut Lock* to threads of throttle return lever screw.

Insert spring into cavity of throttle return lever.

Install lever, screw, and washer on crankcase and hook spring on rib as shown. Torque screw to 120 to 144 in. lbs. (13.5 to 16 N·m).

General

Install fuel pump assemblies and fuel injector/coil assemblies. Refer to **FUEL SYSTEM** section.

IMPORTANT: All injectors must be reinstalled in their original location. Improper injector installation can result in powerhead failure.

Install the stator, flywheel, *EMM*, and wiring harness assembly. Refer to **ELECTRICAL AND IGNITION** and **ENGINE MANAGEMENT MODULE (EMM)** sections.

Install the oil tank and oil injection hoses. Refer to **Oil Tank Assembly** on p. 190.

Install the electric starter and solenoid. Refer to **Starter Installation** on p. 148.

IMPORTANT: Do not lubricate throttle levers or shoulder screws.
UPPER MOUNT SERVICING

Removal
Remove mount retainer screw.

Insert suitable punch in taper of mount retainer. Tap side of punch to loosen mount retainer.

Dislodge mount assemblies and remove.

Inspect mounts and replace if necessary.

IMPORTANT: The motor mount, washer, and screw are serviced as an assembly. Do not disassemble.

Installation
Place mount assemblies in position, with flats facing away from each other.

Apply Extreme Pressure Grease to all sides of retainer and install between mounts.

Apply Nut Lock to retainer screw, install the screw and torque to 15 to 20 ft. lbs. (20 to 27 N·m).
INSTALLATION

Apply Permatex No. 2 to both sides of a new base gasket around the exhaust port only. Install gasket on adapter. To ensure proper sealing, mating surfaces must be clean.

Coat the driveshaft splines with Moly Lube. Do not apply lubricant to end of driveshaft.

Slowly lower powerhead onto exhaust housing. Guide into position over alignment pin at rear of exhaust housing. If necessary, rotate flywheel in a clockwise direction to align crankshaft and driveshaft splines.

Apply Gasket Sealing Compound to the threaded portion of the powerhead screws.

Apply Triple-Guard grease to upper mount screw threads and reinstall.

Loosely install the powerhead screws and upper mount screws.

- Torque the six large powerhead screws to 18 to 20 ft. lbs. (24 to 27 N·m).
- Torque the five small powerhead screws to 60 to 84 in. lbs. (7 to 9.5 N·m).
- Torque upper mount screws to 110 to 130 ft. lbs. (149 to 176 N·m). Confirm that screw heads are tight against steering arm.

IMPORTANT: Retorque powerhead mounting screws after outboard has been run at full operating temperature.
Apply Gasket Sealing Compound to exhaust relief muffler gasket and retaining screws. Install muffler and torque screws 60 to 84 in. lbs. (7 to 9.5 N·m).

Shift Linkage Adjustment
Adjust shift linkage as follows:
- Loosen adjustment screws on shift lever.
- Be sure that ball is centered in detent assembly.
- Adjust shift lever so that the screw hole in shift rod lever lines up with the hole in the gearcase shift rod when gearcase is in neutral.
- When correctly adjusted, the shift lever will be parallel with the vertical line of the outboard, and the distance between the shift lever pin and the center of the shift cable trunnion pocket should be approximately 7 in. (17.8 cm).

IMPORTANT: The shift rod height is the most critical of these adjustments and should not be moved during this procedure. Refer to **SHIFT ROD ADJUSTMENT** on p. 265.

- Tighten adjustment screws to 60 to 84 in. lbs. (7 to 9.5 N·m).

Position the shift rod in the shift rod lever. Install the retaining screw and washer. Torque screw to 60 to 84 in. lbs. (7 to 9.5 N·m).

IMPORTANT: Confirm that gearcase shifts solidly into both forward and reverse and that propeller shaft spins freely in neutral.
Connect the power trim connectors.

Installation of lower motor covers will be greatly simplified if the following steps are performed in sequence:

- Place starboard cover on outboard and route fuel hose and battery cable through grommet notch.
- Insert trim cable grommet into port side cover.
- Connect trim/tilt switch connector.
- Bundle trim wires below starter and in front of capacitor as shown.
- Place port side cover into position on outboard.

Start the screw above the exhaust relief grommet first. Tighten just enough to hold the grommet in place.

Start the top front screw next and draw cover halves together.

Install remaining cover screws and tighten all screws to 24 to 36 in. lbs. (3 to 4 N·m).
Install air silencer and tighten screw.

IMPORTANT: Perform the following procedures before returning outboard to service:

- Index all spark plugs. Refer to Spark Plug Indexing on p. 144.
- Use the *Evinrude Diagnostics* Software program to initiate powerhead break-in. Refer to Powerhead Break-In on p. 98.
- Adjust timing pointer and check engine timing. Refer to TIMING ADJUSTMENTS on p. 142.
- Run outboard and check for water, fuel, or oil leaks.
- Confirm that engine reaches correct operating temperature and does not overheat.
Port Short Block

Starboard Short Block
POWERHEAD VIEWS

Port Dressed Powerhead

Starboard Dressed Powerhead
Front
Rear
Top
Technician’s Notes

<table>
<thead>
<tr>
<th>Related Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulletins</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE CHART</td>
<td>240</td>
</tr>
<tr>
<td>TILT TUBE</td>
<td>242</td>
</tr>
<tr>
<td>REMOVAL</td>
<td>242</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>243</td>
</tr>
<tr>
<td>EXHAUST HOUSING</td>
<td>244</td>
</tr>
<tr>
<td>REMOVAL</td>
<td>244</td>
</tr>
<tr>
<td>DISASSEMBLY</td>
<td>244</td>
</tr>
<tr>
<td>CLEANING AND INSPECTION</td>
<td>246</td>
</tr>
<tr>
<td>ASSEMBLY</td>
<td>246</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>249</td>
</tr>
<tr>
<td>STERN BRACKET</td>
<td>249</td>
</tr>
<tr>
<td>REMOVAL</td>
<td>249</td>
</tr>
<tr>
<td>DISASSEMBLY</td>
<td>249</td>
</tr>
<tr>
<td>ASSEMBLY</td>
<td>252</td>
</tr>
</tbody>
</table>
SERVICE CHART

STERN BRACKET

IMPORTANT
Use Triple-Guard grease on all pivot points

A Triple-Guard Grease
B Gasket Sealing Compound
C Blue Nut Lock
F Instant Bonding Adhesive

Marine Sealant
See "Installation & Predelivery" in manual
EXHAUST HOUSING

- **A** - Triple-Guard Grease
- **B** - Gasket Sealing Compound
- **C** - Adhesive 847
- **D** - Moly Lube
- **E** - Red Ultra Lock
- **F** - Blue Nut Lock
- **G** - Needle Bearing Grease
- **P** - Permatex Number 2
- **Q** - Gel Seal II

Screw Torque Specifications
- **B** - 60-84 In. lbs. (7-9.5 N·m)
- **E** - 60-84 In. lbs. (7-9.5 N·m)
- **A** - 18-20 Ft. lbs. (24.5-27 N·m)
- **F** - 150-180 In. lbs. (17-20 N·m)

002210
TILT TUBE

The tilt tube may be serviced without major disassembly of the outboard using Tilt Tube Service Kit, P/N 434523.

Removal

WARNING

Support the outboard with a suitable hoist.

Pull locking tabs on tilt limit cam loose from collar.

Remove the cam and collar from the tilt tube.

Remove the nut from the starboard side.

Thread the spacer from Tilt Tube Service Kit, P/N 434523, onto the starboard end of the tilt tube.

Remove steering cable wiper nut from tilt tube. Thread the adapter from Tilt Tube Service Kit, P/N 434523, onto the port end of the tilt tube.
Thread Slide Hammer, P/N 432128, into the adapter until at least 2 in. (51 mm) of thread are engaged.

Pull tilt tube from stern bracket with the slide hammer. When tilt tube clears the port stern bracket, remove tilt tube from the spacer.

Installation

Thread starboard end of tilt tube into the spacer.

Thread the adapter onto port end of tilt tube.

Use a wood or leather mallet to tap the tilt tube into position.

Make sure the lock tab is in correct position.

Install the starboard locknut.

WARNING

Replace locknut if definite resistance is not felt.

Torque starboard tilt tube nut to 50 to 54 ft. lbs. (68 to 73 N·m), then loosen nut 1/8 to 1/4 turn.

Replace steering cable wiper nut on port end of tilt tube.

Apply one drop of instant bonding adhesive in receiving channels of tilt limit switch collar and install collar and tilt cam on tilt tube. Be sure locating tab on collar fits in hole on tilt tube.
EXHAUST HOUSING

Removal

Before removing the midsection:
- The gearcase must be removed. Refer to Gearcase REMOVAL AND INSTALLATION on p. 260.
- The powerhead must be removed. Refer to Powerhead REMOVAL on p. 205.

Remove and discard four lower mount screws.

Remove the exhaust housing.

Remove lower mount covers and inspect the lower mounts.

Disassembly

Remove the front and rear screws retaining the adapter/inner exhaust housing to the exhaust housing.
Lift the adapter/inner exhaust housing out of the exhaust housing.

Remove the three upper screws and three lower screws securing the inner exhaust housing to the adapter housing.

Remove the water tube from the inner exhaust housing. Discard water tube grommet.

Remove the seal from the bottom flange of the inner exhaust housing.

Remove the four screws securing the exhaust megaphone to the adapter housing.

Remove the lower mount assemblies as necessary. Lubricate with soapy water and carefully pry at both ends.
Cleaning and Inspection

WARNING

Wear safety glasses to avoid personal injury, and set compressed air to less than 25 psi (172 kPa).

Clean all parts with parts cleaning solvent and dry with compressed air. All nut and screw threads coated with thread locking material must be thoroughly cleaned before assembly. When using a thread locking product, be sure to prime the threads with *Locquic Primer*.

Examine the upper and lower thrust mounts, and replace if deteriorated or damaged.

Before checking the exhaust housing for distortion, thoroughly clean the top and bottom mating surfaces and remove all sealer and corrosion.

Check the exhaust housing for distortion. Place the housing on a surface plate. Use a dial indicator to check flatness by measuring the run-out on the top edge of housing. The maximum allowable run-out is 0.009 in. (0.228 mm). If you do not have access to a dial indicator and surface plate, seek the services of a machine shop. **DO NOT** attempt to straighten a distorted housing; replace it.

IMPORTANT: A distorted exhaust housing will cause the upper driveshaft splines to wear excessively and will damage the crankshaft splines.

Inspect the water tube for obstructions or kinks, which may restrict water flow.

Assembly

Position a new gasket between the exhaust megaphone and adapter housing. Apply *Ultra Lock* to the threads of the screws and torque to 60 to 84 in. lbs. (7 to 9.5 N·m).

Place a new grommet on the water tube and coat the outside edge with *Adhesive 847*.
Install the water tube through the top of the inner exhaust housing and align as shown:

Place a new gasket between the inner exhaust housing and the adapter housing. Apply Ultra Lock to the screws. Install the three lower screws and three upper screws and torque to 60 to 84 in. lbs. (7 to 9.5 N·m).

Apply Adhesive 847 to the bottom flange of the adapter/inner exhaust housing. Install a new seal.

Apply Triple-Guard grease to outer surface of seal.

Clean and degrease the adapter housing and outer exhaust housing mating surfaces with Cleaning Solvent. Apply Gel-Seal II sealant to the adapter flange of the exhaust housing.

Place the adapter/inner exhaust housing into the exhaust housing. Guide the water tube through
the hole in the outer housing and the alignment pin into the adapter housing.

Apply **Gasket Sealing Compound** to threads of the four retaining screws and torque to 60 to 84 in. lbs. (7 to 9.5 N·m).

If removed, coat the lower mounts with soapy water and press into the exhaust housing with the “OUTSIDE” mark facing outward.

Position the mount covers. Apply **Nut Lock** to screws, install washers and screws, and torque to 150 to 180 in. lbs. (17 to 20 N·m).
Installation

Bring the exhaust housing into position with the stern bracket.

Install four new lower mount screws. These screws have lock-patch pre-applied, assisting in a secure mount. Torque screws to 38 to 45 ft. lbs. (51 to 61 N·m).

STERN BRACKET

Removal

Before servicing the stern bracket:
- The gearcase must be removed. Refer to Gearcase REMOVAL AND INSTALLATION on p. 260.
- The powerhead must be removed. Refer to Powerhead REMOVAL on p. 205.
- The exhaust housing must be removed. Refer to Exhaust Housing Removal on p. 244.
- The power trim/tilt unit must be removed. Refer to TRIM AND TILT section.

Disassembly

Remove and discard steering shaft locknut.

Install gearcase. Refer to Gearcase REMOVAL AND INSTALLATION on p. 260.

Install powerhead. Refer to Powerhead INSTALLATION on p. 229.
Remove the steering shaft and thrust washer. It may be necessary to tap the steering shaft out using a wood dowel and mallet.

Pry out upper and lower steering shaft seals and discard. Remove the upper and lower steering shaft bushings.

Remove the anode.

Remove the swivel bracket. Inspect and, if necessary, replace the tilt tube bushings.

Remove the trim sender unit from the port stern bracket and pull its wires through the braided tube.

Remove the two tilt tube washers.
Remove the tilt limit switch and retainer from the swivel bracket.

Remove the two trim rod rollers from the swivel bracket.

Disconnect the trail lock spring and remove it from the swivel bracket. Remove trail arm retainer.

Remove the tilt support and bushing from the swivel bracket and inspect the detent roller and spring.

Remove the trail lock arm and bushings from the swivel bracket.
Assembly

IMPORTANT: Before proceeding, make sure all components have been thoroughly cleaned. Replace any seals that have been removed. Inspect all thrust washers and bushings for evidence of deterioration.

Install the detent roller and spring and the tilt support with bushing in the swivel bracket. Torque bushing to 28 to 30 ft. lbs. (37.9 to 40.7 N·m).

Install the two trim rod rollers on the swivel bracket. Torque to 216 to 240 in. lbs. (24.4 to 27.1 N·m).

Install the trail lock and bushings in the swivel bracket. Torque to 216 to 240 in. lbs. (24.4 to 27.1 N·m).

Install the trail lock spring in the swivel bracket and connect the spring to the trail lock.
Install the tilt limit switch and retainer on the swivel bracket. Torque screws to 40 to 50 in. lbs. (4.5 to 5.7 N·m).

![Image](30758)

1. Tilt limit switch
2. Retainer

- Coat the bushings and seal lips with *Triple-Guard* grease.

- Coat the bushings and seal lips with *Triple-Guard* grease and, if removed, install them in the swivel bracket.

Route the trim sender wires through the braided tube, and install the sender unit in the port stern bracket.

![Image](30760)

Install the upper and lower steering shaft bushings and new seals in the swivel bracket. Both seal lips face out.

- Coat the outside surfaces of seals with *Gasket Sealing Compound*.

Place the swivel bracket between the stern brackets and install the anode.

Install the tilt tube and tilt limit cam. Refer to **TILT TUBE** on p. 242.

Install the steering shaft and thrust washer.
Install the steering shaft keeper. Apply *Locquic Primer* and *Nut Lock* to the splines of the steering shaft and lower mount bracket.

Install the lower mount bracket and a new locking nut with its unstaked side facing the mount bracket. Align the bracket with the steering arm and torque the nut to 130 to 150 ft. lbs. (176 to 204 N·m).

Fill the swivel bracket with *Triple-Guard* grease through the grease fitting on the bracket's port side. Lubricate the tilt tube, swivel bracket, and stern brackets through the two forward grease fittings.

Install the exhaust housing. Refer to Exhaust Housing *Installation* on p. 249.
GEARCASE

TABLE OF CONTENTS

SERVICE CHART .. 256
GEARCASE TYPES .. 258
PROPELLER .. 258
 INSPECTION .. 258
LUBRICANT .. 258
 DRAINING ... 258
 INSPECTION .. 259
 FILLING .. 259
LEAK TEST .. 259
REMOVAL AND INSTALLATION ... 260
 REMOVAL .. 260
 INSTALLATION .. 261
WATER PUMP ... 262
 DISASSEMBLY .. 262
 INSPECTION .. 262
 ASSEMBLY ... 263
SHIFT ROD ADJUSTMENT ... 265
DISASSEMBLY .. 266
 PRE-DISASSEMBLY INSPECTION ... 266
 PROPELLER SHAFT BEARING HOUSING REMOVAL .. 267
 PINION GEAR AND DRIVESHAFT REMOVAL ... 267
 DRIVESHAFT SERVICE .. 269
 SHIFT HOUSING, GEAR AND PROPELLER SHAFT REMOVAL 270
 WATER INTAKE SCREENS ... 270
GEARCASE HOUSING INSPECTION ... 270
BEARING AND SEAL REMOVAL ... 271
 SHIFT HOUSING .. 271
 PINION GEAR BEARING ... 272
 DRIVESHAFT BEARING HOUSING ... 273
 PROPELLER SHAFT BEARING HOUSING .. 273
BEARING AND SEAL INSTALLATION .. 274
 SHIFT HOUSING .. 274
 PINION GEAR BEARING ... 276
 DRIVESHAFT BEARING HOUSING ... 277
 PROPELLER SHAFT BEARING HOUSING .. 278
DRIVESHAFT SHIMMING .. 279
ASSEMBLY .. 280
 WATER INTAKE SCREENS ... 280
 SHIFT HOUSING, GEAR, AND PROPELLER SHAFT INSTALLATION 280
 SHIFT ROD HOUSING INSTALLATION ... 281
 PINION GEAR AND DRIVESHAFT INSTALLATION .. 282
 PROPELLER SHAFT BEARING HOUSING AND GEAR INSTALLATION 283

255
SERVICE CHART

“S” Type Gearcase

26-28 Ft. lbs. (35-38 N·m)

120-144 In. lbs. (13.6-16.3 N·m)

100-110 Ft. lbs. (136-149 N·m)

60-84 In. lbs. (6.8-9.5 N·m)

26-28 Ft. lbs. (35-38 N·m)

45-50 Ft. lbs. (61-68 N·m)

60-84 In. lbs. (7-9.5 N·m)

20-24 Ft. lbs. (27-33 N·m)

35-40 Ft. lbs. (47-54 N·m)

Moly Lube

See Water Pump Assembly instructions

Use Outboard Lubricant on threads only, taper must be clean and dry.

Triple-Guard Grease

Gasket Sealing Compound

Adhesive 847

Red Ultra Lock

Blue Nut Lock

Needle Bearing Grease

DSS133
“O” TYPE GEARCASE

24-36 In. lbs. (2.7-4.1 N·m)
60-84 In. lbs. (7-9.5 N·m)

26-28 Ft. lbs. (35-38 N·m)

35-40 Ft. lbs. (47-54 N·m)
60-84 In. lbs. (7-9.5 N·m)

45-50 Ft. lbs. (61-68 N·m)
60-84 In. lbs. (7-9.5 N·m)

60-84 In. lbs. (7-9.5 N·m)

See Water Pump Assembly instructions

18-20 Ft. lbs. (24-27 N·m)

26-28 Ft. lbs. (35-38 N·m)

60-84 In. lbs. (7-9.5 N·m)

70-80 Ft. lbs. (95-109 N·m)
108-132 In. lbs. (12.2-14.9 N·m)

100-110 Ft. lbs. (136-149 N·m)
Use Outboard Lubricant on threads only, taper must be clean and dry.

15-20 In. lbs. (1.7-2.3 N·m)

120-144 In. lbs. (13.6-16.3 N·m)

Use Outboard Gasket Sealing Compound

A Triple-Guard Grease
B Gasket Sealing Compound
C Adhesive 847
D Moly Lube
E Red Ultra Lock
F Blue Nut Lock
G Needle Bearing Grease
GEARCASE

GEARCASE TYPES

GEARCASE TYPES

<table>
<thead>
<tr>
<th>Outboard Model</th>
<th>Gearcase Type</th>
<th>General Comparison</th>
<th>Service Procedure Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L) Models with 20 in. shaft</td>
<td>“S”</td>
<td>Unique housing, shafts, gears, and bearings</td>
<td></td>
</tr>
<tr>
<td>(X) Models with 25 in. shaft</td>
<td>“O”</td>
<td>Unique housing, shafts, gears, and bearings</td>
<td>Similar</td>
</tr>
</tbody>
</table>

PROPELLER

Inspection

Carefully examine propeller and outboard for the following:
- Damaged blades and signs of propeller cavitation (burned paint, etc.)
- Spun or overheated inner hub
- Worn or twisted splines and inadequate lubricant
- Damaged or missing converging ring (if applicable)
- Damage to outer hub area
- Worn, missing, or incorrect thrust washer and spacer
- Correct size and style
- Check for bent or damaged propeller shaft and twisted splines.

Refer to Propeller Hardware Installation on p. 65.

LUBRICANT

Draining

WARNING

Gearcase lubricant may be under pressure and/or hot. If plug is removed from a recently operated outboard, take precautions to avoid injury.

Remove the lubricant level plug, then the lubricant drain/fill plug, and drain the lube from the gearcase into a container. Inspect the lube and the magnets on the plugs for metal chips.

When servicing the propeller, always shift the outboard to NEUTRAL, turn the key switch OFF, and disconnect the battery cables at the battery.

The presence of metal fuzz can indicate normal wear of the gears, bearings, or shafts within the gearcase. Metal chips can indicate extensive internal damage.
Inspection
Inspect the lubricant for water contamination. Water can make the lubricant milky in appearance. However, normal aeration can also cause the same appearance.

To check for water contamination, drain lubricant into a suitable glass container. Allow the drained oil to settle for a minimum of one hour to determine if there is an abnormal amount of water in the oil. Some gearcase lubricants are designed to mix with a small amount of water from normal water vapor condensation within the gearcase.

Refer to LEAK TEST on p. 259.
Overheated lubricant will have a black color and burned odor.

Internal gearcase inspection is recommended when lubricant is contaminated or shows signs of failure.

Filling
Secure the gearcase in a vertical position.

Remove the lubricant level plug and the lubricant drain/fill plug.

Slowly fill the gearcase with HPF XR gearcase lube through the drain/fill hole until it appears at the oil level hole. Filling the gearcase too quickly can cause air pockets and the gearcase may not fill completely. Clean plug seal area and install the lubricant level plug and new seal, then the lubricant drain/fill plug and new seal. Tighten them to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

LEAK TEST
Drain lubricant before testing.

STEP 1
Install lubricant drain/fill plug and seal, thread pressure test gauge fitting and seal in lubricant level hole.

Pressurize 3 to 6 psi (21 to 42 kPa).

If pressure gauge indicates leakage, submerge the gearcase in water to determine source of leak.

If the gearcase pressure gauge does not indicate leakage, increase pressure to 16 to 18 psi (110 to 124 kPa). Check for leakage.

Make necessary repairs and repeat test.

STEP 2
Complete successful STEP 1 before proceeding.

Install vacuum test gauge. Apply 3 to 5 in. of vacuum (76 to 127 mm) Hg. with pump.

Check for leakage.

If leakage occurs, apply oil around suspected seal. If leak then stops or oil is drawn in, that seal is defective.
Repeat test, gearcase must hold minimum of 15 in. (381 mm) Hg.
GEARCASE
REMOVAL AND INSTALLATION

REMOVAL AND INSTALLATION

Removal

WARNING

To prevent accidental starting while servicing, twist and remove all spark plug leads.

During service, the outboard may drop unexpectedly. Avoid personal injury; always support the outboard’s weight with a suitable hoist or the tilt support bracket during service.

Remove screw from shift lever to release the lower shift rod.

Remove the forward screw with the washer, and remove middle screw.

Remove the four gearcase retaining screws.

Remove the gearcase assembly from the exhaust housing, being careful not to bend the shift rod or damage the water tube. The lower inner exhaust housing may come out with the gearcase.

Note where the index mark on the gearcase aligns with the index number of the adjustable trim tab so the trim tab can be reinstalled in the same position. Remove the trim tab retaining screw and trim tab from the gearcase.
Installation

WARNING
During service, the outboard may drop unexpectedly. Avoid personal injury; always support the outboard’s weight with a suitable hoist or the tilt support bracket during service.

IMPORTANT: Before installation of gearcase on motor, shift rod adjustment MUST be checked. Refer to **SHIFT ROD ADJUSTMENT** on p. 265.

Coat the driveshaft splines with *Moly Lube*. DO NOT coat top surface of the driveshaft because lubricant may prevent seating of the driveshaft in the crankshaft.

Apply *Adhesive 847* to the lower exhaust housing seals’ inner surfaces. Position two new seals on the housing. Apply *Triple-Guard* grease to the seals’ outer surfaces and position the housing on the gearcase.

Apply *Gel-Seal II* to gearcase mating surface pads on exhaust housing. Slide the gearcase into place, making sure:
- Driveshaft engages the crankshaft.
- Water tube enters the water pump.
- Lower inner exhaust housing installs correctly.
- Shift rod does not turn and is positioned properly in shift shaft connection area.

Apply *Gasket Sealing Compound* to threads of the gearcase retaining screws. Torque the screws:
- **3/8 in.** screws – 26 to 28 ft. lbs. (35 to 38 N·m)
- **7/16 in.** screws – 40 to 50 ft. lbs. (54 to 68 N·m)

Apply *Gasket Sealing Compound* to threads of the trim tab screw. Install and align the trim tab with the index marks noted prior to disassembly. Torque the trim tab screw to 35 to 40 ft. lbs. (47 to

TYPICAL

1. Lower exhaust seals

WARNING
During service, the outboard may drop unexpectedly. Avoid personal injury; always support the outboard’s weight with a suitable hoist or the tilt support bracket during service.

IMPORTANT: Before installation of gearcase on motor, shift rod adjustment MUST be checked. Refer to **SHIFT ROD ADJUSTMENT** on p. 265.

Coat the driveshaft splines with *Moly Lube*. DO NOT coat top surface of the driveshaft because lubricant may prevent seating of the driveshaft in the crankshaft.

Apply *Adhesive 847* to the lower exhaust housing seals’ inner surfaces. Position two new seals on the housing. Apply *Triple-Guard* grease to the seals’ outer surfaces and position the housing on the gearcase.

Apply *Gel-Seal II* to gearcase mating surface pads on exhaust housing. Slide the gearcase into place, making sure:
- Driveshaft engages the crankshaft.
- Water tube enters the water pump.
- Lower inner exhaust housing installs correctly.
- Shift rod does not turn and is positioned properly in shift shaft connection area.

Apply *Gasket Sealing Compound* to threads of the gearcase retaining screws. Torque the screws:
- **3/8 in.** screws – 26 to 28 ft. lbs. (35 to 38 N·m)
- **7/16 in.** screws – 40 to 50 ft. lbs. (54 to 68 N·m)

Apply *Gasket Sealing Compound* to threads of the trim tab screw. Install and align the trim tab with the index marks noted prior to disassembly. Torque the trim tab screw to 35 to 40 ft. lbs. (47 to
GEARCASE
WATER PUMP

54 N·m). For adjustment, refer to Trim Tab Adjustment on p. 68.

Position the shift rod in the connector.

Install and torque shift rod screw to 60 to 84 in. lbs. (7 to 9.5 N·m).

IMPORTANT: During break-in period of a reassembled gearcase, change the gearcase lubricant between 10 to 20 hours of operation.

WARNING

To prevent loss of operator control, check for proper shifting operation and adjust, if necessary.

IMPORTANT: During break-in period of a reassembled gearcase, change the gearcase lubricant between 10 to 20 hours of operation.

WATER PUMP

Disassembly

Rotate the driveshaft counterclockwise to unlock the impeller cam. Remove the four impeller housing screws.

Slide the water pump off the driveshaft. Remove the impeller drive cam, O-ring, impeller plate, and gasket. Discard the gasket.

Remove all the parts from the housing.

Inspection

Check impeller for overheating, hub separation, and other wear or damage.

Check liner and wear plate for scoring, distortion, and impeller material transfer.

Inspect the housing for cracks or melting.
Assembly

Apply a drop of Adhesive 847 in the seal ring groove at each of the four ribs.

IMPORTANT: Do not allow any adhesive to get into the air bleed groove in the impeller housing. If this groove is blocked by adhesive, the pump will lose its prime and will not pump water.

Install the O-ring in groove in the impeller housing.

Lightly coat the exterior of the impeller cup with Gasket Sealing Compound. Install the cup in the impeller housing.

Install the water tube grommet with the inside taper facing up.

Install the impeller housing cover and torque two screws to 24 to 36 in. lbs. (2.7 to 4.1 N·m).

Apply Adhesive 847 to flat side of the impeller housing grommet. Install the grommet, flat side down.

Lightly coat the liner with Triple-Guard grease. With a counterclockwise rotation, install the impeller into the liner with slot for impeller cam facing out.
Run a thin bead of Adhesive 847 in the seal groove, and install the special shaped O-ring seal.

Apply Gasket Sealing Compound to both sides of a new impeller plate gasket. Install the gasket and impeller plate.

Apply Triple-Guard grease to a new impeller O-ring. Slide the O-ring down the driveshaft and slide half way over installed drive cam to temporarily hold cam in place.

The sharp edge of the cam is the leading edge in clockwise rotation. Triple-Guard grease or Adhesive 847 can be used to retain the drive cam during water pump installation.

Slide the water pump down the driveshaft. Align impeller slot with the impeller cam. Rotate the driveshaft to engage the impeller cam with the impeller, and slide water pump down over cam. Be sure impeller cam does not fall out of position.

IMPORTANT: Make sure the impeller engages the impeller cam properly. Serious powerhead damage will result if impeller cam is displaced.

Align the impeller housing with the gearcase. Apply Gasket Sealing Compound to threads of the four impeller housing screws. Install the screws and torque to 60 to 84 in. lbs. (7 to 9.5 N·m).

25 IN. MODELS

Place water tube spacer with grommet on the impeller housing cover.

IMPORTANT: Before installation of gearcase on motor, shift rod adjustment MUST be checked. Refer to SHIFT ROD ADJUSTMENT on p. 265.
SHIFT ROD ADJUSTMENT

Check the shift rod height from the shift rod hole to the surface of the gearcase using Universal Shift Rod Height Gauge, P/N 389997.

With the shift rod and detent lever in NEUTRAL, rotate the shift rod up or down as necessary for correct adjustment. Once correct height is achieved, rotate rod one half turn or less to face offset forward.

IMPORTANT: The NEUTRAL detent is a two-step design. Make sure the NEUTRAL detent ball is in the center step before checking shift rod height.

Shift Rod Heights

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 in. (L)</td>
<td>“S”</td>
<td>21.25 in. ± One-Half Turn</td>
</tr>
<tr>
<td>25 in. (X)</td>
<td>“O”</td>
<td>26.25 in. ± One-Half Turn</td>
</tr>
</tbody>
</table>
WARN

Wear safety glasses to avoid personal injury, and set compressed air pressure to less than 25 psi (172 kPa).

IMPORTANT: Clean and inspect all components during disassembly. Replace any damaged components, seals, O-rings, and gaskets upon assembly.

Remove the propeller and mounting hardware.

Drain and inspect oil as described in LUBRICANT on p. 258.

Remove gearcase as described in REMOVAL AND INSTALLATION on p. 260.

Remove water pump as described in WATER PUMP on p. 262.

Pre-Disassembly Inspection

Before disassembling the gearcase, examine the following:

- **Gearcase Housing** — Check for visible damage to skeg, strut, anti-ventilation plate, bullet, and mating surface. Check seal areas for visible signs of lubricant leakage.

- **Propeller Shaft** — Check for bent or damaged shaft. Check for twisted splines and damaged threads.

- **Shift Rod** — Check for misadjusted, bent, or binding rod. A misadjusted shift rod height can cause shift difficulty, loss of boat and outboard control, and gearcase damage.

- **Hydrostatic Seal Grooves** — Must be in good condition to help prevent propeller ventilation.

- **Gearcase Anodes** — If anodes have eroded to two-thirds their original size, they must be replaced.

- **Drive Shaft** — Check splines for visible damage, twisting and wear. Severe spline wear indicates the exhaust housing or gearcase has been distorted, possibly by impact damage.

- **Water Intake Screens** — Check for damage and blockage. If screens cannot be cleaned, they must be replaced. Different screens are available and should not be mixed. Refer to correct model parts manual for listing and description.
Propeller Shaft Bearing Housing Removal

Remove the two screws, washers, and retainers holding the propeller shaft bearing housing.

Remove wedge, screw, and washer ("O" Type).

Remove the propeller shaft bearing housing from the gearcase using the following:
- Puller body, screw, and handle from Universal Puller Set, P/N 378103.
- Two 5/16-18 x 11 in. (279 mm) threaded rods, two large 5/16 in. I.D. flat washers, and two 5/16-18 nuts (obtain locally).

Pinion Gear and Driveshaft Removal

Position the shift rod to move the clutch dog as far forward as possible. This will assist in the removal of the pinion nut.

Loosen the pinion nut from the bottom of the driveshaft using Driveshaft Holding Socket, P/N 311875, Pinion Nut Holder, P/N 334455, and Wrench Retainer, P/N 341438. Pad the handle of holder to prevent damage to gearcase.
GEARCASE
DISASSEMBLY

Remove the four driveshaft bearing housing screws with washers.

(Special) Driveshaft Removal Procedures
The driveshaft to pinion taper is a locking taper. If necessary, use Driveshaft Puller, P/N 390706, and Backing Plate, P/N 325867, to break the lock. Install the tools as shown by clamping them around the driveshaft. Alternate the two vertical screws against the backing plate inserted between the puller and the gearcase until the driveshaft pops loose from the pinion.

Remove pinion nut and driveshaft from the gearcase. If driveshaft cannot be removed, refer to (Special) Driveshaft Removal Procedures on p. 268.

The bearing housing, shims, thrust bearing, and thrust washer will come out with the driveshaft.

Reach inside the gearcase and remove the pinion and pinion nut.

1. Driveshaft bearing housing screws
COA3153

1. Drive shaft
2. Puller
3. Backing plate

1. Bearing housing
COA3558
2. Shims
3. Thrust bearing
4. Thrust washer

If upper driveshaft becomes separated from lower driveshaft, use Lower Driveshaft Puller, P/N 342681, to remove. Install puller into lower driveshaft and turn 90° to position hook under pin in driveshaft. Thread Slide Hammer, P/N 391008, into puller and remove driveshaft.
Driveshaft Service
To separate the upper driveshaft (if needed) from the lower driveshaft, remove the roll pin. Replace the damaged component.

To assemble the driveshaft, install new driveshaft retainer into the groove of the upper driveshaft.

Install the upper driveshaft into the lower driveshaft, aligning the holes in the driveshaft retainer and the lower driveshaft.

“S” Type Gearcases
Install the roll pin flush.

“O” Type Gearcases
Install the roll pin to the specified dimension.
Shift Housing, Gear and Propeller Shaft Removal

Push down on the shift rod. This will move the detent lever downward to clear the inside of the gearcase when the shaft assembly is pulled out. Unthread the shift rod from the detent lever. Remove the six screws, shift rod, and cover from the gearcase.

Discard the cover gasket. Remove and discard the shift rod O-ring from inside of cover.

Remove propeller shaft assembly from gearcase.

Water Intake Screens

Remove and clean water intake screens. Replace if damaged.

GEARCASE HOUSING INSPECTION

Thoroughly clean gearcase housing to remove all dirt and debris prior to inspection. Inspect pinion bearing and forward thrust surface of gearcase housing.

Use Gearcase Alignment Gauge Kit, P/N 5006349 to check the condition of gearcase housing prior to reassembly. Refer to instructions provided with kit. Use Gauging Head, P/N 352879, for “S” Type gearcases.

IMPORTANT: DO NOT force gauging shaft into alignment hole. Shaft MUST slide easily into hole of gauging head. If shaft does not slide into hole, gearcase housing is damaged and must be replaced.
BEARING AND SEAL REMOVAL

Shift Housing

WARNING

Wear safety glasses to avoid injury.

IMPORTANT: The shift housing and forward gear bearing are serviced as an assembly. If either are worn or damaged, replace the complete assembly.

Disassembly

Insert a suitable tool under one end of the clutch dog spring and remove it from its groove by unwrapping it from around the clutch dog. **Discard the spring.**

Push the pin out of the clutch dog. Remove all components.

Remove the gear, thrust bearing, and thrust washer from the shift housing.

WARNING

Wear safety glasses to avoid personal injury. The detent ball and spring and come out with great force.

1. **Clutch dog spring**
2. **Thrust bearing**
3. **Thrust washer**

1. **Shift lever pin**
2. **Shift shaft**
3. **Cradle**
4. **Shift lever**
5. **Shifter detent**
Wrap the housing with a shop cloth to catch ball and spring. Rotate the shifter detent 90° in either direction, then pull the detent out of the housing.

Remove the detent ball and spring.

Remove needle bearings from bearing housing for cleaning and inspection (“O” Type).

Pinion Gear Bearing

Remove pinion bearing retaining screw.

“S” Type Gearcases

Assemble Pinion Bearing Remover/Installer, P/N 391257, in the gearcase as follows:

Use a mallet to drive the bearing from the housing.

“O” Type Gearcases

Use a 7/8 in. wrench to hold the remover in place. Use a 3/4 in. wrench to turn flange nut clockwise. Draw the bearing up from the housing.
Driveshaft Bearing Housing

The driveshaft bearing is not serviceable. Replace the bearing housing assembly if the bearing is worn or damaged. Also, inspect the driveshaft bearing surface if the bearing is damaged.

Seal Removal

Remove the driveshaft bearing housing seals using Puller Bridge, P/N 432127, and Large Puller Jaws, P/N 432129. Discard the seals.

Remove and discard the O-ring from the bearing housing.

Clean the bearing housing in solvent to remove sealer from the seal bore and the O-ring groove.

Propeller Shaft Bearing Housing

Rear Seal Removal

Remove seals using Puller Bridge, P/N 432127, and Small Puller Jaws, P/N 432131. Position the plate on top of the housing to support the bridge, and tighten jaws securely behind the inner seal.

Bearing Removal

Rear seals must be removed if bearing replacement is needed. See **Rear Seal Removal**.

IMPORTANT: Inspect bearings in place. If a bearing is removed for any reason, it must be discarded.

Remove either bearing using Puller Bridge, P/N 432127, and Large Puller Jaws, P/N 432129. Rest the puller plate on top of the housing to support the bridge, and tighten the jaws securely behind the bearing.
GEARCASE
BEARING AND SEAL INSTALLATION

Inspect the bearing housing anode. Replace anode if it is reduced to two-thirds of original size.

BEARING AND SEAL INSTALLATION

Shift Housing

IMPORTANT: Clean and inspect all components before beginning assembly procedures. Replace any damaged components.

Discard the bearing housing O-ring. Clean the housing and bearings in solvent and dry thoroughly. If bearings were not replaced, rotate the needles to check for freedom of movement.

Inspect O-ring groove, and sand off any sharp edges that would cut O-ring and prevent its sealing. Check for and remove any nicks or burrs on front of bearing housing.

Insert shifter detent at 90° angle into the housing as shown, while depressing the ball and spring with a suitable tool. Once the shifter detent is past the ball, remove the tool and position detent to engage NEUTRAL position.
Thoroughly grease 25 needle bearings with Needle Bearing grease and place in the bearing case ("O" Type gearcases).

With shifter detent in NEUTRAL, install arms of shift lever into detent slots. Align the pivot holes and insert the retaining pin. Push shifter detent down.

Coat thrust bearing and thrust washer with Needle Bearing grease. Place the bearing on the back of the gear. Set the washer on top of the thrust bearing. Insert the gear, bearing, and washer into the bearing housing.

IMPORTANT: Bearing and washer must be installed in the correct order.

Rest the cradle on the shift shaft.
GEARCASE
BEARING AND SEAL INSTALLATION

Align holes in the clutch dog with slot in the propeller shaft. Install the clutch dog on the shaft with “PROP END” facing rear of the shaft.

IMPORTANT: The clutch dog is not symmetrical. If installed backward, it will not fully engage and will immediately damage itself and the gears.

Slide the propeller shaft onto the shift shaft, align the hole in the shaft with the hole in the clutch dog, install the pin and then, a new clutch dog retaining spring. Position three coils over each end of the pin, MAKING SURE NONE OF THE COILS OVERLAP OR ARE LOOSE.

Pinion Gear Bearing
Assemble the following components of Pinion Bearing Remover and Installer, P/N 391257, as shown:

“S” Type Gearcases

1. “PROP END” COB7581
2. 1/4-20 X 1/2 in. Hex head screw
3. 1 in. O.D. Flat washer
4. Spacer, P/N 341437
5. Plate, P/N 391260
6. Rod, P/N 326582
7. 1/4-20 X 1 1/4 in. Hex head screw

“O” Type Gearcases

1. Retaining spring COB3101
2. 1/4-20 X 1/2 in. Hex head screw
3. 1 in. O.D. Flat washer
4. Spacer, P/N 326584
5. Plate and Bearing P/N 391260
6. Rod P/N 326582
7. 1/4-20 X 1 1/4 in. Hex head screw
GEARCASE

BEARING AND SEAL INSTALLATION

IMPORTANT: Spacers are different sizes and cannot be interchanged.

Apply *Needle Bearing* grease to the needle bearings and insert them into the bearing case ("O" Type gearcases).

Place the bearing on the installer tool with the **lettered side of the bearing facing the top** of the gearcase. Use *Needle Bearing* grease to hold the bearing on the tool.

IMPORTANT: The pinion bearing is tapered so that, when installed correctly, its shape compensates for stresses in the gearcase and allows full bearing contact. Whenever a gearcase is disassembled, the pinion bearing should be checked to ensure that it has been installed with the lettering facing up.

Insert the tool with the bearing into the gearcase. Drive the bearing into the gearcase until the washer on the tool contacts the spacer.

Remove the tool.

Position new O-ring on the pinion bearing retaining screw. Apply *Nut Lock* to screw threads. Install the screw and torque to 60 to 84 in. lbs. (7 to 9.5 N·m).

Driveshaft Bearing Housing

Lightly apply *Gasket Sealing Compound* to a new O-ring. Install the O-ring in top groove of the bearing housing. Do not allow sealant in oil passage.

IMPORTANT: Do not install the O-ring in the bearing housing's bottom groove. The bottom groove is an oil passage. Gearcase damage could result.

Install new seals back to back in bearing housing using Seal Installation Tool, P/N 330268. Apply *Gasket Sealing Compound* to metal casings of the seals before installing. Install inner seal with lip facing toward bearing housing, then the outer seal with lip facing away from bearing housing. Apply *Triple-Guard* grease to seal lips.
Propeller Shaft Bearing Housing

Bearing Installation
Oil, then install new bearings in bearing housing.

Place the lettered end of the bearing case on the bearing installer, then press the bearing into the housing until the tool seats. When installed, the lettered end of the bearing should be visible.

Bearing installation tool:
- P/N 326562 – “S” Type gearcases
- P/N 339750 – “O” Type gearcases

Rear Seal Installation
Install new seals back to back in bearing housing using Seal Installer. Apply Gasket Sealing Compound to metal casings of the seals before installing.

Install inner seal with lip facing toward the bearing housing, then outer seal with lip facing away from the bearing housing.

Seal installation tool:
- P/N 326551 – “S” Type gearcases
- P/N 336311 – “O” Type gearcases

Apply Triple-Guard grease to seal lips.

Install bearing housing anode. Torque screws to 108 to 132 in. lbs. (12.2 to 14.9 N·m).
DRIVESHAFT SHIMMING

IMPORTANT: If new pinion gear is needed, replace gear set before shimming.

Pinion gear backlash is achieved by using shims between the driveshaft bearing housing and the thrust washer. When installing a new thrust bearing or washer, bearing housing, pinion, or driveshaft, it is necessary to properly shim the assembly to restore factory clearance.

Use Driveshaft Shimming Tool, P/N 393185.

Shim gauge bars are precision made and should be handled carefully. The length of each bar is stamped near the part number. This dimension is 0.020 in. (0.508 mm) shorter than the actual shimmed length of the driveshaft.

IMPORTANT: Degrease pinion and driveshaft tapers prior to assembly. Check tapers for any damage or material transfer. Replace any damaged components before proceeding.

Assemble the driveshaft bearing housing, thrust washer, thrust bearing, and pinion onto the driveshaft. Use Driveshaft Seal Protector, P/N 318674, whenever installing or removing the bearing housing. Lightly coat the threads of the pinion nut with outboard lubricant and torque to 100 to 110 ft. lbs. (136 to 149 N·m).

IMPORTANT: The original pinion nut may be used for shimming, but must **NOT** be used in final assembly.

Select Collar, P/N 341440, and Shim Gauge Bar, P/N 328367.

Slide the collar onto the driveshaft with large end in contact with the bearing housing.

Insert the assembled driveshaft into the tool base and tighten preload screw against the driveshaft until groove on the spring-loaded plunger is flush with end of threads. Tighten locking ring on preload screw.

Rotate the driveshaft several revolutions to seat bearings.

Lay the tool base on its side. Position the shim gauge bar against guide pins of the tool base.

Check the squareness of the bearing housing mounting surface by holding the shim gauge bar against the pinion while rotating **just the bearing housing** and measuring the clearance between the gauge bar and the bearing housing with feeler
gages. Measure between each pair of screw holes. Replace the bearing housing and repeat check if variance exceeds 0.004 in. (0.010 mm).

Check the squareness of the pinion to the driveshaft by holding the shim gauge bar against the bearing housing (between the screw holes) while rotating just the driveshaft and pinion assembly and measuring the clearance between the shim gauge bar and the pinion. Replace the pinion or the driveshaft, as necessary, and repeat the check if variance exceeds 0.002 in. (0.050 mm).

Subtract the average clearance measurement obtained from 0.020 in. (0.508 mm) to determine the correct shim thickness required. Select the fewest number of shims to achieve the correct thickness.

Remove the driveshaft from the tool base. Remove the collar and bearing housing from the driveshaft, and add the required amount of shims.

IMPORTANT: Use extreme care when removing bearing housing to avoid damaging the seals. Use Driveshaft Seal Protector, P/N 318674.

Check shimming by reassembling the driveshaft with shims and placing it back into the tool base. The measurement between the gauge bar and the pinion should be 0.020 in. (0.508 mm).

Remove the nut and pinion from the driveshaft. Discard the nut.
Shift Rod Housing Installation

Lubricate a new shift rod cover O-ring with Triple-Guard grease. Install the O-ring into the shift rod cover.

IMPORTANT: Make sure O-ring is fully seated in groove around shift rod cover’s full circumference.

Place the shift rod grommet on the shift rod.

Install shift rod spacer under grommet on 25 in. models.

Apply Triple-Guard grease to the threaded end of the shift rod and insert it through the cover. Turn the shift rod while pushing it through the cover to avoid damaging the O-ring.

Apply Gasket Sealing Compound to both sides of a new shift rod cover gasket. Position the gasket on the gearcase. Thread the shift rod into the shifter detent about four turns.

Move shift rod from side to side while pushing on the propeller shaft to ensure proper alignment of the bearing housing locator pin into the locator pin hole in the gearcase.

Apply Ultra Lock to the threads of the shift rod cover screws. Install the screws. Torque the screws to 60 to 84 in. lbs. (7 to 9.5 N·m).
Pinion Gear and Driveshaft Installation

Refer to **DRIVESHAFT SHIMMING** on p. 279 before proceeding.

Position the driveshaft thrust bearing, thrust washer, and shim(s) (selected earlier) on the driveshaft, exactly in order shown.

IMPORTANT: The inside taper of the pinion gear and the driveshaft taper MUST be completely free of grease. Clean the tapers with *Cleaning Solvent*. Use a shop towel free of grease and lint.

Lightly coat the threads of a **new** pinion nut with outboard lubricant and install on the driveshaft using Pinion Nut Starting Tool, P/N 342216. Turn the driveshaft by hand to engage the nut. Hand tighten pinion nut and remove the pinion nut starting tool. Proceed to next step and then torque procedure.

Install washers on the driveshaft bearing housing screws. Apply *Gasket Sealing Compound* to the threads of the screws. Install screws and torque to 120 to 144 in. lbs. (13.6 to 16.3 N·m).

Move shift rod to position clutch dog as far forward as possible. Be sure excess grease is removed from the pinion bearing.

Use Driveshaft Holding Socket, P/N 311875, Pinion Nut Holder, P/N 334455, and Wrench
Retainer, P/N 341438, to torque the pinion nut to 100 to 110 ft. lbs. (136 to 149 N·m).

Housing must be completely seated to install retainer tabs.

Propeller Shaft Bearing Housing and Gear Installation

Oil and install thrust bearing and thrust washer on hub of reverse gear. Slide the gear assembly onto the propeller shaft until it engages the pinion gear.

Lightly apply Gasket Sealing Compound to a new bearing housing O-ring. Install O-ring in groove in the housing.

Install housing into gearcase, aligning screw holes with retainer slots in gearcase.
GEARCASE ASSEMBLY

“O” Type Gearcases
Loosen retainer screws 1/4 turn.

Install wedge, screw, and washer. Apply Ultra Lock to threads and torque screw 15 to 20 in. lbs. (1.7 to 2.3 N·m).

Re-torque two retainer screws to 18 to 20 ft. lbs. (24 to 27 N·m).

Confirm that torque on the wedge screw is 15 to 20 in. lbs. (1.7 to 2.3 N·m).

To complete gearcase assembly, refer to:
- LEAK TEST on p. 259
- WATER PUMP on p. 262
- SHIFT ROD ADJUSTMENT on p. 265
- REMOVAL AND INSTALLATION on p. 260
- LUBRICANT on p. 258
- Propeller Hardware Installation on p. 65
- Trim Tab Adjustment on p. 68.

During break-in period of a reassembled gearcase, change the gearcase lubricant between 10 to 20 hours of operation.
TABLE OF CONTENTS

SYSTEM DESCRIPTION ... 286
MANUAL ADJUSTMENT ... 286
TRAILERING BRACKET AND TILT SUPPORT 286
ROUTINE INSPECTIONS ... 287
 GENERAL ... 287
RESERVOIR FLUID .. 287
MANUAL RELEASE VALVE .. 287
STERN BRACKETS ... 287
TROUBLESHOOTING ... 288
ELECTRICAL CIRCUIT TESTS ... 288
 RELAY TESTING .. 288
TRIM AND TILT MOTOR CURRENT DRAW TESTS 288
TRIM AND TILT MOTOR NO LOAD TEST 289
TRIM GAUGE TEST ... 290
TRIM SENDER TEST .. 291
REMOVAL AND INSTALLATION ... 291
 REMOVAL ... 291
INSTALLATION ... 293
SERVICING ... 294
 DISASSEMBLY .. 294
ASSEMBLY ... 295
ADJUSTMENTS .. 296
TRIM AND TILT
SYSTEM DESCRIPTION

SYSTEM DESCRIPTION

The power trim/tilt hydraulic system is completely contained between the outboard's stern brackets.

The system consists of:
• Electric motor
• Oil reservoir
• Pump manifold assembly
• Cylinder body assembly

Optimal boat and outboard performance can be achieved by adjusting (trimming) the angle of outboard propeller thrust. The first 15° of outboard movement is considered trim range.

Outboard movement beyond the trim range is considered tilting. Tilting of the outboard may be desired for shallow water drive and for trailering/storage. The tilt cylinder moves the outboard through the tilt range (final 50°).

A tilt relief valve limits the propeller thrust load that will be supported by the unit in tilt range. As pressure increases, the outboard will tilt down to the top of the trim range.

IMPORTANT: When in tilt range, make sure water is available to gearcase water pickups.

Manual Adjustment

The outboard can be manually raised or lowered through the entire trim and tilt range by opening the manual release valve a minimum of three turns. The manual release valve must be closed and torqued 45 to 55 in. lbs. (5 to 6 N·m) to hold the outboard in position and before normal operation can be resumed.

IMPORTANT: The tilt support must not be used to support the outboard while trailering.

Trailering Bracket And Tilt Support

Use the trailering bracket to support the outboard when trailering in the tilted position. This bracket protects the hydraulic system from damage.

Tilt the outboard up fully, engage the bracket, then tilt the outboard down until the bracket is firmly in position.

For mooring or storing the boat with the outboard tilted, a tilt support is provided to support the outboard.
ROUTINE INSPECTIONS

General
Check for external signs of fluid leakage. Correct causes as necessary.

Check the battery and make sure it is in good operating condition.

Reservoir Fluid
Check reservoir fluid level every three years or every 300 operating hours. System capacity is approximately 20 fl. oz. (620 ml).
- Tilt the outboard and engage the tilt support.
- Remove the fill plug.
- Add Evinrude/Johnson Biodegradable TNT Fluid, as needed, to bring level to the bottom of the fill plug threads.
- Install the fill plug and torque 45 to 55 in. lbs. (5 to 6 N·m).
- Disengage tilt support.
- Cycle the unit at least five complete cycles to purge all air from the system. When cycling the unit, hold the trim switch ON an additional 5 to 10 seconds after the unit reaches the end of its travel before activating the switch in the opposite direction.

Manual Release Valve
Check the manual release valve with a torque wrench.

IMPORTANT: The valve must be torqued 45 to 55 in. lbs. (5 to 6 N·m).

Stern Brackets
Inspect the stern brackets for binding with the swivel bracket in the thrust rod area. Retorque the tilt tube nuts as follows:
- Tighten the tilt tube nuts to a torque of 40 to 45 ft. lbs. (54 to 60 N·m).
- Loosen one nut 1/8 to 1/4 turn after torquing.
TROUBLESHOOTING

Use the following guidelines to check a single piston trim/tilt unit that is not working correctly.

Cylinder Leakdown:
- Manual release valve seals
- External leaks

No reverse lock:
- External leaks

No operation, motor runs:
- Manual release valve open
- Fluid level low
- Pump coupler
- Hydraulic pump

No tilt down:
- Manual release valve
- Fluid level

Slow performance:
- Manual release valve
- Fluid level low
- Mechanical binding
- Electric motor
- Hydraulic pump

Unit locked in tilt up:
- Mechanical binding
- Hydraulic pump

ELECTRICAL CIRCUIT TESTS

Relay Testing

When the trim-UP button is pressed, the UP relay is energized and connects the blue trim motor wire to the battery positive (+) terminal. The green trim motor wire remains grounded. When the button is released, the blue trim motor wire returns to a grounded position.

When the trim-DOWN button is pressed, the DOWN relay is energized and connects the green trim motor wire to the battery positive (+) terminal. The blue motor wire remains grounded. When the button is released, the green trim motor wire returns to a grounded position.

Refer to **TILT/TRIM RELAY TEST** on p. 138 for relay testing procedure.

Trim and Tilt Motor Current Draw Tests

Careful analysis of the electric motor's current draw and trim/tilt unit operating speed aids evaluation of the electric motor and certain mechanical components.

Use a battery rated at 360 CCA (50 Ah) or higher that is in good condition and fully charged to perform this test.

IMPORTANT: The specifications contained in the **Performance Chart** are for static hydraulic tests. DO NOT attempt to perform the following tests while the boat is moving.
Connect a 0 to 100 A DC ammeter in series between the battery side of the starter solenoid and the red lead to the trim/tilt relay module.

Observe ammeter and a stopwatch while running hydraulic unit through several complete cycles.

Compare test results to the values listed:

Performance Chart

<table>
<thead>
<tr>
<th>Mode</th>
<th>Normal Current Draw</th>
<th>Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Range UP</td>
<td><30 A</td>
<td>12-18</td>
</tr>
<tr>
<td>Full Range DOWN</td>
<td><30 A</td>
<td><18</td>
</tr>
<tr>
<td>Stall</td>
<td><40 A</td>
<td>–</td>
</tr>
</tbody>
</table>

Test results include three basic possibilities:

A. Low current draw – Check for:
- Valves leaking
- Relief valve springs weak
- Pump damaged
- O-rings leaking
- Check valves fouled or damaged
- Manual release valve damaged

B. High current draw – Check for:
- Pump binding
- Motor binding
- Cylinder binding
- Valves sticking

C. Normal current draw, slow operating speed – Check for:
- Impact valves damaged
- Check valve or shuttle valve malfunctioning
- Manual release valve damaged

Trim and Tilt Motor No Load Test

IMPORTANT: Securely fasten motor in a suitable fixture before proceeding with this test.

Use a battery rated at 360 CCA (50 Ah) or higher that is in good condition and fully charged to perform this test.

Connect a 0 to 50 A ammeter in series with the battery positive (+) terminal, ammeter red lead toward battery.

Attach or hold a vibration or mechanical tachometer to the motor while performing this test.
Monitor motor RPM and current draw.

The motor shaft must rotate clockwise, as viewed from the pump end, when positive (+) is applied to the blue lead, and negative (–) is connected to green lead.

The motor shaft must rotate counterclockwise, as viewed from the pump end, when positive (+) is applied to the green lead, and negative (–) is applied to the blue lead.

If test results vary, replace the motor.

Trim Gauge Test

STEP 1

Turn key switch ON. Using a voltmeter, check for voltage between the trim gauge “I” and “G” terminals.
- If no voltage, check condition of instrument harness, key switch, and engine 20 A fuse.
- If voltage, go to **STEP 2**.

STEP 2

Remove the white/tan lead from the trim gauge “S” terminal. With key switch ON, gauge should indicate full-trim DOWN position. Now connect a jumper wire between terminals “S” and “G.” Gauge should indicate full-trim UP position.
- If results are different, replace the trim gauge.
- If results agree, refer to **Trim Sender Test**.
Trim Sender Test

IMPORTANT: To avoid immediate meter damage, never apply a multimeter to an electrical circuit where voltage is present.

Disconnect the 3-pin Deutsch connector between the instrument harness and engine trim harness.

Connect an ohmmeter between the white/tan wire, terminal “C,” of the engine harness and a clean engine ground.

With the outboard fully DOWN, meter must show a reading above 80 \(\Omega \).

With the outboard fully UP, meter must show a reading below 10 \(\Omega \).

- If results agree, refer to **Trim Gauge Test** on p. 290.
- If results are different, replace trim sender.

REMOVAL AND INSTALLATION

Removal

Remove port lower engine cover and disconnect the trim/tilt connectors. Refer to **Powerhead REMOVAL** on p. 205.

Remove the rubber grommet from the blue/green trim/tilt cable connector.

Remove the terminals from the connector by using a suitable tool to depress the tab. While the tab is depressed, pull on the wire from the rear of the connector to release it from the connector.
Separate the trim/tilt unit wires in the braided tube to permit removal through the hole in the stern bracket.

Unscrew the manual release valve, raise the unit, and lock it in place with the tilt support.

Remove the external snap rings from the upper pin.

Use a punch to remove the upper pin.

Retract the tilt cylinder rod.

Remove the external snap rings from the lower pin.

Use a punch to remove the lower pin and remove the trim/tilt unit from the stern brackets.
Remove the unit from the stern brackets far enough to remove the ground lead from the pump motor mounting screw.

Install external snap rings onto upper pin with sharp edge facing out.

Installation
Install the ground lead. Position the hydraulic unit between the stern brackets.

Apply *Triple-Guard* grease to the lower pin and install the pin.

If loosened, torque the tilt tube nut to 50 to 54 ft. lbs. (68 to 73 N·m), then loosen the nut by 1/8 to 1/4 turn.

Install external snap rings on lower pin with sharp edge of ring facing out.

Place trim/tilt wires in braided tube and install through hole in the stern bracket.

Extend tilt cylinder rod to match with holes in swivel bracket.

Apply *Triple-Guard* grease to upper pin and install the pin.

Release the tilt support and lower the outboard. Torque the manual release valve to 45 to 55 in. lbs. (5.1 to 6.2 N·m).

Install connector on trim/tilt cable and reconnect trim connectors to engine wire harness.

Install port lower engine cover. Refer to Power-head INSTALLATION on p. 229.
SERVICING

Disassembly
Thoroughly clean the unit before disassembling. Scrub all outside surfaces with a stiff brush and hot, soapy water to prevent surface dirt from contaminating internal parts.

Always use a lint free shop cloth when handling power trim/tilt components.

If painting the unit is required, paint it after it is completely assembled. Painting of individual components may cause flakes of paint to enter the hydraulic passages during assembly. Tape the trim/tilt piston rods before painting.

WARNING

There may be high pressure behind some power trim valves. To avoid injury when removing manual release valve, be sure to cover valve with a shop cloth until the pressure is released. Wear safety glasses.

IMPORTANT: Before removing manual release valve, relieve pressure by fully extending cylinder. Screw the manual release valve in. Remove the retaining ring using a small pick or screwdriver. Discard the retaining ring.

Slowly remove the manual release valve. There may be pressure behind the valve—wear safety glasses.

Inspect the manual release valve. Discard the O-rings on the housing.

Remove the four large motor flange retaining screws. Remove the motor and discard O-ring, screws, and washers.
Remove drive coupler from either the motor or the pump assembly.

Position the motor on the manifold and install four new screws and lock washers. Tighten the screws 35 to 50 in. lbs. (4 to 6 N·m).

Assembly

IMPORTANT: Use only Evinrude/Johnson Biodegradable TNT Fluid to fill the hydraulic system.

Install drive coupler in pump assembly.

Install a new motor O-ring.

Oil O-rings and install them on the manual release valve. Oil and install the manual release valve. Tighten the valve to a torque of 45 to 55 in. lbs. (5 to 6 N·m).

Install new retaining ring in groove.
TRIM AND TILT
ADJUSTMENTS

Fill the oil reservoir up to the fill plug with *Evinrude/Johnson* Biodegradable TNT Fluid. Install and tighten the fill plug. Do not torque the plug at this time.

Run the motor, then recheck oil level. Cycle the unit several times and check the oil level when the cylinder is fully extended. Oil should be level with bottom of fill port. Install and tighten the fill plug to a torque of 45 to 55 in. lbs. (5 to 6 N·m).

ADJUSTMENTS

Refer to *Trim Sending Unit Adjustment* on p. 67.

Refer to *Tilt Limit Switch Adjustment* on p. 66.
SAFETY

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Products and the Safety of People Who Use Them</td>
<td>S–3</td>
</tr>
<tr>
<td>Outboard Shift Systems and Safety</td>
<td>S–4</td>
</tr>
<tr>
<td>Outboard Speed Control System and Safety</td>
<td>S–5</td>
</tr>
<tr>
<td>Outboard Steering Control System and Safety</td>
<td>S–6</td>
</tr>
<tr>
<td>Outboard Fuel, Electrical System, and Safety</td>
<td>S–8</td>
</tr>
<tr>
<td>Outboard Mounting System and Safety</td>
<td>S–11</td>
</tr>
<tr>
<td>Outboard Hydraulic Tilt/Trim Shock Absorption System and Safety</td>
<td>S–13</td>
</tr>
<tr>
<td>Outboard Emergency Stop System and Safety</td>
<td>S–14</td>
</tr>
<tr>
<td>Summing Up</td>
<td>S–16</td>
</tr>
<tr>
<td>Marine Products and the Safety of People Who Fix Them</td>
<td>S–17</td>
</tr>
<tr>
<td>Handling Outboards</td>
<td>S–17</td>
</tr>
<tr>
<td>Handling Lead/Acid Batteries</td>
<td>S–21</td>
</tr>
<tr>
<td>Gasoline – Handle with Care</td>
<td>S–22</td>
</tr>
<tr>
<td>Hazardous Products</td>
<td>S–23</td>
</tr>
<tr>
<td>Safety Awareness Test</td>
<td>S–24</td>
</tr>
</tbody>
</table>

S–1
MARINE PRODUCTS AND THE SAFETY OF PEOPLE WHO USE THEM

⚠️ WARNING ⚠️

This Safety section contains information relevant to the safety of boaters and people that service boats. Please read this section carefully and share it with all shop technicians. Always follow common shop safety practices. If you have not had training related to common shop safety practices, you should do so not only to protect yourself, but also to protect the people around you.

It is impossible for this manual to cover every potentially hazardous situation you may encounter. However, your understanding and adherence to the recommendations contained in this manual and use of good judgment when servicing outboards will help promote safety. Always be alert and careful: a good foundation for safety.

Enjoyable boating is the goal of people who design and build marine products. To reach this goal, manufacturers are careful to make sure:

- Product user is informed; and
- Products are safe and reliable.

It is up to you, the people who...

- Rig boats;
- Fix machinery; and
- Maintain equipment

...to keep the products safe and reliable.

This section talks about safe boating and how you can help make it safe. Some of these safety issues you will know, others you may not.

First!
A word about parts... Plain parts; special parts; all parts!

DO NOT SUBSTITUTE PARTS

"They look the same, but are they the same?"

- Same size?
- Same strength?
- Same material?
- Same type?

Don’t substitute unless you know they are the same in all characteristics.

Second!

- Special locking bolts and nuts are often used to hold steering, shift, and throttle remote control cables to the outboard.
- When you take any outboard off a boat, keep track of special nuts and bolts. Do not mix with other parts. Store them on the outboard, then they are there when you need them.
- When the outboard is returned to the boat, use only the special nuts and bolts to hold remote steering, shift, and throttle cables to the outboard.
Outboard Shift Systems and Safety

The outboard Shift System starts here at the remote control lever...

...and ends here at the propeller.

What is most important?

When control lever is in FORWARD, NEUTRAL or REVERSE...

...shift linkage must match control lever position.

What could happen?

IF...

...propeller still powered (turning) unknown to operator, or outboard will START in gear, and boat will move suddenly.

IF...

...boat will move opposite to direction wanted by operator.

How can loss of shift control be minimized?

Read, understand, and follow manufacturer's instructions

- Follow warnings marked “△” closely.
- Assemble parts carefully.
- Make adjustments carefully.
- Test your work. Do not guess. Make sure propeller does just what the operator wants and nothing else.
- Do not shift gears on a stopped outboard. Adjustments can be lost and parts weakened.

When rigging or after servicing

S–4
Outboard Speed Control System and Safety

The outboard speed control system starts here at the remote control lever... (single lever remote control)

...and ends here on the powerhead.

What is most important?

When control lever is moved from FORWARD (or REVERSE) to NEUTRAL...

Powerhead speed must slow down to allow operator to shift into NEUTRAL.

Operator must be able to STOP propeller.

What could happen?

If Operator cannot slow down the outboard or shift into NEUTRAL gear (stop propeller), Operator could panic and lose control of boat.

How can loss of speed control be minimized?

Read, understand, and follow manufacturer’s instructions

- Follow warnings marked “⚠️” closely.
- Assemble parts carefully.
- Make adjustments carefully.
- Test your work. Do not guess. Make sure speed control system does just what the operator wants and nothing else.
- Make sure full throttle can be obtained so Operator will not overload parts.
Outboard Steering Control System and Safety

What is most important?

The steering system:
• Must not come apart;
• Must not jam; and
• Must not be sloppy or loose.

What could happen?

• If steering system comes apart, boat might turn suddenly and circle. Persons thrown into the water could be hit.

• If steering jams, operator may not be able to avoid obstacles. Operator could panic.

• If steering is loose, boat may weave while operator tries to steer a straight course. With some rigs (at high speed), loose steering could lead to loss of boat control.
How can loss of steering control be minimized?

- Use a steering system recommended by the outboard manufacturer which meets Marine Industry Safety Standards (ABYC).
- **Read, understand, and follow** manufacturer’s **instructions**
- Follow warnings marked “Δ” closely.
- Assemble parts carefully.
- Make adjustments carefully.
- Keep parts moving freely. Lubricate parts as shown in manual.
- Use the bolts, nuts and washers supplied with steering attachment kits—they are a special locking type that will not loosen, rust, or weaken.

Transom Mounted Steering Systems – Check to Uncover Possible Trouble!

Tilt outboard into boat, then turn it.

During this procedure, steering parts:
- Must not bind; and
- Must not touch other boat, outboard, or accessory parts in transom area.

Why? A hard blow to the outboard’s gearcase can result in damage to steering parts.

Be aware that raising or lowering outboard on transom can change a set-up which was OK earlier. If moved up or down even one-half inch, run test again to make sure steering parts are free and clear.

Check for damaged parts. Blows to the outboard like this or this can put heavy loads on steering parts. Look for:
- Cracked parts, including steering parts, swivel brackets, and transom brackets;
- Bent parts; and
- Loose nuts and bolts.

Replace damaged parts. If weakened, parts could fail later on the water when least expected.
Outboard Fuel, Electrical System, and Safety

The fuel system starts here at the fuel tank...

...and ends here at the fuel injector.

The electrical system begins here at the battery...

...and ends here on the powerhead.

What is most important?

• Fuel leakage must be eliminated.
• Stray electric sparks must be avoided.

What could happen?

• When not boating, fuel leaking in car trunk or van, or place where portable tank is stored (basement or cottage), could be ignited by any open flame or spark (furnace pilot light, etc.).
• When boating, fuel leaking under the engine cover could be ignited by a damaged or deteriorated electrical part or loose wire connection making stray sparks.

How Can Fire and Explosion Be Minimized?

• Read, understand, and follow manufacturer’s instructions
• Follow warnings marked “△” closely.
• Do not substitute fuel or electrical systems parts with other parts which may look the same. Some electrical parts, like starter motors, are of special design to prevent stray sparks outside their cases.
• Replace wires, sleeves, and boots which are cracked or torn or look in poor condition.

When mixing and refueling, always mix gas and oil outside...

Always fill the tank outside the boat

Fumes are hard to control. They collect and hide in the bottom of the boat.

To avoid those static electric sparks, ground (touch) the spout against the tank.

Do not use electrical devices such as cellular phones in the vicinity of a fuel leak or while fueling.

If you use a funnel, it has to be metal to ground the spout to the tank.

Remember:
If electrical parts are replaced or even removed from the outboard, check the following:

Wire and high voltage lead routing
- As shown in service manual
- Away from moving parts which could cut wires or wire insulation
- Away from engine cover latches which can catch and cut insulation from high voltage spark plug leads

Sleeves, boots, shields
- In position (to avoid shock hazard)
- Not torn or cracked

Metal Clamps – Tie Straps
- Position as shown in manual

Screws, Nuts, Washers
- Tighten firmly—these keep clamps in position and ends of wires from sparking
- Where lock washers are called for, use them

Spark Plug Boots
- Not torn or cracked
- Fully pushed onto spark plug

Spark Plugs
- Avoid rough handling that could crack ceramic part of plug. (Sparks may jump across outside of plug.)

In transom area:

All Connections
- Clean
- Tight
 (Prevents sparks)

Electric Cable
- Not rubbing on sharp objects
- Enough slack to allow full turning without pull loads on cable
 (prevents sparks)

Batteries
- Secure in approved battery box or battery tray
- Battery terminals insulated
- No strain on cables
After repair on any part of the fuel system, pressure test engine portion of fuel system as shown:

When Storing:

- Make sure silencer and its gaskets are on engine and drain hose is in place.
- Air silencer mounting screws are special lock screws. Use only the special screws.

Squeeze until bulb feels hard

Check for leaks under engine cover

Whenever possible, remove hose from outboard and from tank.

If tank cap has an air vent valve, make sure it is closed.

If gasoline tank is stored indoors, do not put it in a room having an appliance with a pilot light or where electrical appliances or switches (which may spark) will be used.

Store hose around ears of tank. This way, gasoline is trapped in tank and not in the hose, where it might leak onto the floor if the hose deteriorates.

When Running:

- Make sure silencer and its gaskets are on engine and drain hose is in place.
- Air silencer mounting screws are special lock screws. Use only the special screws.

Carburetor air intake silencer will catch and hold fuel which may flood into engine if carburetor float sticks.
Outboard Mounting System and Safety

The mounting system includes:

- outboard parts
- bolts, nuts, and washers
- boat’s transom

What is most important?

- Outboard must stay in position on boat’s transom.

What could happen?

- Outboard may slide on transom
 - Boat may turn and be hard to steer.
- Outboard may tilt on transom
 - Boat may turn and be hard to steer.

- If outboard hits something solid and does not stay on the transom, boat occupants may be injured from the outboard or its parts entering the boat.

 - Boat’s transom could break away.
- Outboard may be lost overboard.
 - Boat may SINK.

How Can Loss of Mounting Be Minimized?

- Read, understand, and follow manufacturer’s instructions.
- Follow warnings marked “△” closely.
If weakened, parts could fail later on the water, when not expected

When rigging or fixing any boat, if transom looks weak, tell the owner.

If transom is curved, outboard may come loose.

Use bolts, nuts, and washers supplied with outboard. They are usually special, and will not rust or weaken.

If owner tells you “I hit something really hard...”

Check for a high speed blow to the lower unit.

“...I was backing up and I think the outboard may have hit a tree or something.”

Check for a slow, heavy squash to the outboard.

• Look for damaged parts and loosened nuts and bolts in both the steering and mounting systems. Replace damaged parts.
Outboard Hydraulic Tilt/Trim Shock Absorption System and Safety

What is most important?

- Shock absorption system must always be ready to absorb some blows to the lower parts of the outboard.
- Outboard must not trim in too far suddenly.

What can happen?
Without shock protection, a blow like this could cause serious damage to the outboard and injury to boat occupants from the outboard or its parts entering the boat. Transom could break away and outboard may be lost overboard.

At high speeds, sudden trimming in too far may dive boat under water or spin it around.

How can possible conditions be minimized?

- Read, understand, and follow manufacturer’s instructions.
- Follow warnings marked “△” closely.
- Test your work whenever possible.
- If oil leaks are seen in service areas, determine source. Keep reservoir filled.
- If outboard is hydraulic tilt/trim model, always return rod to hole position determined by boat operator and make sure angle adjusting rod retain is in locked position.
- Make sure manual release valve is closed tight. Torque to 45 to 55 in. lbs. (5.1 to 6.2 N·m).
- If left open, outboard has no shock protection.

Trimming “in” too far can happen when angle adjusting rod is not in the right hole or is not in any hole (lost).
Outboard Emergency Stop System and Safety

The emergency system begins here at the clip and lanyard...

...and ends here in the ignition system on the powerhead.

What is most important?

• The emergency stop system must **STOP** the engine when the clip is removed or the lanyard pulled from the emergency stop / key switch.

What could happen?

If switch fails...

...engine will keep running when clip is pulled from the switch

If lanyard is caught...

...engine will keep running.
What could happen?

If lanyard is cut or frayed...

...lanyard or clip may break when pulled...

If engine does NOT stop when lanyard is pulled, an operator thrown from the boat could be hit as boat circles area. Or, boat may not turn but leave area as a runaway. Operator may drown and boat WILL run into something.

How can failure of the emergency stop system be minimized?

- Read, understand, and follow manufacturer’s instructions
- Follow warnings marked “⚠” closely.
- Assemble parts carefully.
- Inspect lanyard for cuts or fraying; clip for wear. Replace with original parts. Do not substitute.
- Locate control box and other items in area to keep lanyard from being caught.
- ALWAYS TEST EMERGENCY STOP SYSTEM. PULL LANYARD. ENGINE MUST STOP. IF IT DOES NOT, REPAIR BEFORE NEXT USE.
SAFETY

Summing up

Now you know some things that can take the joy out of boating.

No doubt about it—proper safety takes time!
• Reading and understanding instructions
• Re-reading warnings marked “△”
• Putting parts together correctly
• Making correct adjustments
• Testing your work

And making sure
• Worn or damaged parts are replaced
• Replaced parts are like originals in every way
• Customer is told of things which need attention

But, do you really want the alternative?
SAFETY

MARINE PRODUCTS AND THE SAFETY OF PEOPLE WHO FIX THEM

The first part of this Safety section talked about safe boating and how you, the technician, can help keep it safe for the boater. But what about you? Technicians can be hurt while:

• Rigging boats
• Troubleshooting problems
• Fixing components
• Testing their work

Some of these safety issues you will know, others you may not.

Handling Outboards

When lifting outboards

Some outboards have a fixed lift bracket bolted to the powerhead. Because outboard will want to hang like this when off the floor...

If engine does not have fixed lifting bracket and you use Universal Puller, P/N 378103, and Lifting Eye, P/N 321537, or Lifting Eye and Adapter Assembly, P/N 396748...

...use only the special hardened screws and washers from the set.

Regular screws are not strong enough. Screws may break and outboard may drop suddenly.

Outboard can drop suddenly if hoist or engine stand are in poor shape, or too small for the job.

• Make sure shop aids have extra capacity, and keep them in good repair.
Running outboard with engine cover removed

Engine cover is a guard. When you remove cover/guard to work on the outboard, remember: loose clothing (open shirt sleeves, neckties), hair, jewelry (rings, watches, bracelets), hands and arms can be caught by the spinning flywheel.

Handling high voltage parts like spark plugs and coils can shock you and may cause you to recoil into the rotating flywheel.

Two people working together on a live outboard must look out for each other. Never, ever, use the key to start the outboard before signaling your partner. He may be leaning over the outboard with hands on the flywheel, handling a “hot” electrical part, or near the propeller.

Outboard starting at the wrong time

When you do things that turn the flywheel like:
• Off-season storage fogging (oiling) of outboard;
• Removing propeller with a powered tool;
• Electrical system checks;
• Servicing the flywheel; or
• Any other actions \textbf{ALWAYS}...

1) Turn key switch OFF
2) Twist and remove \textbf{ALL} spark plug leads
3) Shift to \textbf{NEUTRAL}

\textbf{Check prop shaft. Is outboard really in NEUTRAL?}

\textbf{NO SPARK} \rightarrow \textbf{NO START} \rightarrow \textbf{NO SURPRISES}
Running outboard too fast (Overspeeding)

- “Too fast” means running faster than outboard normally runs on boat.

Running too fast can happen when:

1) Using a flushing device...
 Turn on water before starting outboard. Keep engine speed below 2000 RPM. With no load, outboard will run too fast very easily. Wear eye protectors.

2) Running with the wrong test wheel...
 This may happen if outboard runs too fast.

Running outboards: Exhaust fumes

DANGER

DO NOT run the engine indoors or without adequate ventilation or permit exhaust fumes to accumulate in confined areas. Engine exhaust contains carbon monoxide which, if inhaled, can cause serious brain damage or death.

- Whenever running the engine, assure there is proper ventilation to avoid the accumulation of carbon monoxide (CO), which is odorless, colorless, and tasteless, and can lead to unconsciousness, brain damage, or death if inhaled in sufficient concentrations. CO accumulation can occur while docked, anchored, or underway, and in many confined areas such as the boat cabin, cockpit, swim platform, and heads. It can be worsened or caused by weather, mooring and operating conditions, and other boats. Avoid exhaust fumes from the engine or other boats, provide proper ventilation, shut off the engine when not needed, and be aware of the risk of backdrafting and conditions that create CO accumulation. In high concentrations, CO can be fatal within minutes. Lower concentrations are just as lethal over long periods of time.
Running outboards: Propellers

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact with a rotating propeller is likely to result in serious injury or death. Assure the engine and prop area is clear of people and objects before starting engine or operating boat. Do not allow anyone near a propeller, even when the engine is off. Blades can be sharp and the propeller can continue to turn even after the engine is off. Always shut off the engine when near people in the water.</td>
</tr>
</tbody>
</table>

Eye protection

Eyes need protection when:

- Grinding
- Spraying cleaners and paints
- Chiseling
 Tip: When steel on steel, use plastic- or brass-type hammers. They don’t chip off as easily as steel hammers.
- Acid
- Ends of cables

Wear Safety Glasses

Protect eyes from:
Handling Lead/Acid Batteries

Charging lead acid batteries

1) Attach and remove these cables with charger UNPLUGGED from 110 V wall socket. (This prevents shocks if charger is defective.)

2) Observe correct polarity when connecting these larger leads.

3) Always charge in a well ventilated area. Charging causes acid solution to give off hydrogen gas through the vents in the caps. **Make sure vents are open.** If clogged, pressure inside may build. Battery may EXPLODE.

Battery gas is explosive!

While charging or discharging, remember:

- No smoking
- No flames
- No sparks

DO NOT check battery charge by placing metal objects across posts. You will make sparks and serious burns are possible.

Never remove charger cables from battery posts. It is a sure way to make a lot of sparks in an area surrounded by battery gas.

After charging:

- Shut off charger
- Pull charger plug out of 110 V outlet
- Take charger cables off battery posts
Gasoline – Handle With Care!

Gasoline vapor and air mixtures explode easily and violently when mixed as shown...

When you smell ANY odor of gasoline, explosion is possible.

Gasoline fumes are heavy and will sink to the lowest point in the boat or room and will STAY there, WAITING...

What can you do?

Store gasoline in sturdy, approved, sealed gas can and keep outside.

- Always store gasoline outside in a safe can (flame arrester and pressure relief valve in pour spout).
- Fill portable tanks outside of boat. Spillage will collect in bottom of boat.
- Use fuel as fuel ONLY, not for a cleaner or degreaser.
- If fumes are smelled in shop, basement, or garage, immediately:
 - Put out open flames, cigarettes, sparking devices;
 - Wipe up spill or leak;
 - Get towels and rags outside fast;
 - Open doors and windows; and
 - Check lowest area for fumes.

Be aware of items in and around repair area which can ignite fumes. Control them if fumes are smelled.

- Matches, cigarettes, blow torches, welders
- Electric motors (with unsealed cases)
- Electric generators (with unsealed cases)
- Light switches
- Appliance pilot lights or electric ignitors (furnace, dryer, water heaters)
- Loose wires on running outboards
- Other variables which may ignite fumes

How many of these are in your repair area?
Hazardous Products

Know how items in the shop can hurt people...

READ

• “How and where to use”
• “How to give First Aid.” Have recommended First Aid materials on hand should an emergency arise
• “How to dispose of can”

It’s all on the back of the can or bottle label.

And remember: Little children are very curious and will try to taste everything so keep containers away from children!
SAFETY

Safety Awareness Test
The Technician’s Safety Awareness Test....

1) Did you read this Safety section from page S–1 to page S–24?

2) Are you ready to take responsibility for the safe maintenance practices and procedures of your repair shop, co-workers, and technicians?

3) Do you understand all the safety precautions and instructions contained in this entire service manual?

4) Will you follow all safety warnings, precautions, instructions and recommendations outlined in this service manual?

5) Do you understand that the service manual as a whole and this Safety section, in particular, contain essential information to help prevent personal injury and damage to equipment and your customers?

6) Have you received training related to common shop safety practices to protect yourself and others around you?

7) When replacement parts are required, will you use Evinrude®/Johnson® Genuine Parts or parts with equivalent characteristics, including type, strength and material?

8) Are you ready to follow the recommendations in this service manual before you service any boat or outboard?

9) Do you understand that safety-related accidents can be caused by carelessness, fatigue, overload, preoccupation, unfamiliarity of operator with the product, drugs and alcohol, just to name a few?
INDEX

A
Abbreviations 12
Adjustments
 Control Cable 54
 Shift Linkage 230
 Shift Rod 19, 265
 Timing Pointer 142
 TPS Calibration 99, 143
 Trim Sending Unit 67
 Trim Tab 68
Air Silencer 79
Air Temperature Sensor
 Connections 104
 Description 88
 Resistance Test 128
Alternator Circuit Test 131
AMP Connector Servicing 150
Anodes
 Anti-Corrosion 73
 Continuity Check 73
 Gearcase 266
 Propeller Shaft Bearing Housing 274
 Stern Bracket 250, 253

B
Barometric Pressure Sensor 88
Batteries
 Battery Switches 35
 Cable Routing 42
 Cables 35
 Charging System Tests 130
 Connections 34, 78
 Installation 34
 Maintenance 78
 Multiple Batteries 35
 Requirements 19, 34
 Storage 82
 Wiring Diagrams 37
Bearing
 Connecting Rod 222
 Crankshaft 211, 212, 216, 217
 Driveshaft 273
 Pinion Gear 272, 276
 Propeller Shaft 273, 278
 Wrist Pin 210, 218
Break-In
 EMM Programming 60, 63, 83, 98, 232
 Gearcase 262, 284
 Oiling 60
 Procedure 63
C
Cable, Hose, and Wire Routing 41, 54
Capacitor 114
 Resistance Test 130
Connecting Rods
 Installation on Crankshaft 222
 Installation on Piston 219
 Orientation 222
 Removal from Crankshaft 209
 Removal from Piston 210
 Torquing 222
Control Cable
 Adjustments 54
 Identification 45
 Routing 33, 41
Cooling System
 Adapter Housing 194
 Components 193
 Cylinder Block Venting 195
 EMM and Vapor Separator Cooling 196
 Engine Temperature Check 197
 Flushing 74
 Maintenance 74
 Operating Temperatures 19, 63
 Operation 196
 Pressure Relief Valve 194, 199
 Thermostat 19, 195
 Turbulence 46
 Vapor Separator 159
 Water Intake Screens 72, 74, 270, 280
 Water Pump 193, 262
 Water Supply Tube 193, 245, 246
INDEX

Corrosion
Anodes 73, 250, 253, 266, 274
Battery Terminals 78
Cylinder walls 213
Exterior Finishes 73
Metallic Components 73
Steering Cable 75
Winter Storage 81

Crankcase
Assembly 224
Disassembly 208

Crankshaft
Assembly 216, 221
Disassembly 210
Inspection 214

Crankshaft Position Sensor
Description 89
Operation Test 118
Resistance Test 127

Cylinder Bore
Honing 212
Inspection 214

Cylinder Head
Inspection 213
Installation 220
Removal 209

D

Dash Connections 126
Deutsch Connector Servicing 149
Diagnostic Procedures Overview 108

Diagnostic Software
Break-In Programming 60, 63, 98, 232
Communication with Outboard 94
Crankshaft Position Sensor 89, 118
Cylinder Drop Test 110
Description 94, 107
Diagnostic Procedures Overview 108
Engine Monitoring Screen 111
Fuel Injector Programming 99, 161, 171, 173
Fuel Injector Tests 120, 121, 164
Fuel Pump Test 119, 164
Idle Speed 99
Oil Injector Test 185
Oil Priming 60, 184, 190
Oiling Rate 60, 98
Reports 100
Sensor Monitoring 127
Service Codes 95
Shutdown Mode 92
Static Spark Test 116
Tiller/Remote Programming 98
Timing Verification 98, 143
TPS Calibration 99, 143
Voltage Monitoring 117

Driveshaft
Installation 282
Removal 267
Service 269
Shimming 279

Driveshaft Bearing Housing 273, 277

Dual-Outboard
Alignment 69

E

Electrical Circuits
Fuse 106
Ground Circuits 106
Identification 104
Ignition System 114
Key Switch 113
Start Circuit 112
SystemCheck 132
Tests 106

Electrical Connectors 149
AMP Connectors 150
Deutsch Connectors 149
Packard Connectors 152

Electrical Harness Connections 56

Emergency Stop Switch
Installation 32
Operation Check 62
Test 136

Emissions Information 13

EMM
12 V Circuit Sensor 87
Connections 86, 91
Diagnostic Software 94
Diagnostics 93, 107, 108
Fuel Injector Servicing 99
Functions 86
LED Indicators 107
Map Replacement 101
Reports 100
Sensors 87, 88
Service Codes 95
Timing Verification 98, 143
TPS Calibration 99
Transfer 101

Engine Temperature Sensor 128

Exhaust Housing
- Assembly 246
- Cleaning and Inspection 246
- Disassembly 244
- Installation 249
- Removal 244

Exterior Finish Protection 73

F

Flushing, Cooling System 74

Flywheel
- Installation 141
- Removal 140

Fuel Filter
- Requirements 40

Fuel Injectors
- Crush Ring Replacement 171
- Electrical Circuits 163
- EMM Programming 99, 161, 171, 172, 173
- Installation 172
- Removal 171
- Tests 120, 121, 164, 166

Fuel System
- Additives 18, 57
- Components 158
- Filter 40, 79, 158, 169
- Fuel Circulation Pump 119, 160
- Fuel Lift Pump 158, 167, 169
- Fuel Manifolds 174
- Fuel Requirements 57
- Hose Routing 162
- Intake Manifold 174
- Minimum Octane 18, 57
- Pressure Tests 165
- Priming 58
- Relieving Pressure 168
- Requirements 39
- Troubleshooting 119, 164
- Vapor Separator 158, 170
- **Fuse** 106

G

Gauges
- SystemCheck 33, 101
- Trim Gauge Test 290

Gearcase
- Assembly 280
- Bearing and Seal Installation 274
- Bearing and Seal Removal 271
- Disassembly 266
- Inspection 266
- Installation 261
- Leak Test 259
- Lubricant 19, 77, 258
- Removal 260

Grommet 54

H

Honing 212

Hoses
- Fuel System 39, 42
- Grommet 54
- Maintenance 79
- Oil Distribution 189, 190
- Routing, Cooling System 192
- Routing, Fuel System 162

I

Idle Controller 90
Idle Speed 99

Ignition
- Circuits 114
- Primary Circuit Resistance Test 118
- Running Tests 117
- Static Spark Test 116

Ignition Coil Resistance Tests 128

Instrument Harness 126

Intake Manifold
- Assembly 175
- Disassembly 174
- Inspection 175
- Installation 176
- Removal 174
INDEX

K

Key Switch
 Circuit Tests 134
 Operation Check 62
 Start Circuit 113

L

Lower Cover
 Installation 231
 Removal 205

Lubrication
 Control Linkages 76
 Engine Oil 18, 59
 Gearcase 19, 77, 258
 Power Trim 19
 Propeller Shaft 77
 Steering System 75
 Swivel Bracket 76
 Tilt Tube 76
 Trailering Bracket 76

M

Maintenance Schedule 72
Model and Serial Number 6
Motor Mounts
 Lower Mount Servicing 244, 248
 Upper Mount Servicing 228
Mounting the Engine
 Hull Preparation 46
 Mounting Height 53
Muffler
 Installation 230
 Removal 206

N

Neutral Start Switch
 Tests 135
Neutral Switch 114

O

Oetiker Clamp Servicing 43
Oiling Rate 59, 98, 184
Oiling System
 Components 179
 Electrical Circuits 180, 181
 Engine Lubricant 18, 59
 New Engine Set-Up 59
 Oil Distribution 182
 Oil Distribution Hoses 189, 190
 Oil Pressure Switch 89, 179
 Oil Recirculation System 183
 Oil Tank 179, 190
 Oil to Fuel Check Valve Test 188
 Oiling Rate 184
 Priming 60, 184
 Service Codes 179
 Tests 185
 Outboard Excessive Smoking T–5
 Outboard Hard to Start T–3
 Outboard Starts and Stalls T–4
 Outboard Starts, Low Maximum RPM T–5
 Outboard Surges, Runs Rough T–6
 Outboard Will Not Start T–1
 Outboard Won’t Shut Off T–4

P

Packard Connector Servicing 152
Pinion Gear
 Bearing Installation 276
 Bearing Removal 272
 Installation 282
 Removal 267
Piston Rings
 End Gap 214, 219
 Installation 219
 Removal 210
Pistons
 Assembly 218
 Inspection 214
 Installation 219
 Removal 209
Powerhead
 Assembly 216
 Cleaning 212
 Compression Testing 204
 Disassembly 207
 Inspection 213
 Installation 229
 Removal 205
Predelivery Checks 61
Pre-Season Service 82
Pressure Relief Valve
 Assembly 200
 Disassembly 199
 Inspection 200
Prime Oil 97
Priming
 Fuel System 58
 Oiling System 184
Propeller
 Inspection 258
 Installation 65
 Selection 64
Propeller Shaft
 Installation 280
 Lubrication 77
 Removal 270
Propeller Shaft Bearing Housing
 Assembly 278
 Disassembly 273
 Installation 283
 Removal 267
Relays
 Trim and Tilt 138, 288
Remote Controls
 Cable Adjustment 54
 Installation 33
 Selection 32
Retaining Ring Pliers 204, 210
Rigging
 Boat 32
 Electrical Harness 56
 Outboard 54
RPM Limit 19, 86, 89, 90, 92
S
S.A.F.E. 180
 Description 92
 Oil Pressure 89, 179
 Temperature 87, 88, 196
 Voltage 87, 180
Safety S–1
Sensors 127
 Air Temperature Sensor 88, 128
 Barometric Pressure Sensor 88
 Crankshaft Position Sensor 89, 118, 127
 Electrical Connections 104
 EMM 87, 88
 Engine Temperature Sensor 88, 128
 Throttle Position Sensor 89, 127, 143
Serial Number Location 6
Shift Housing
 Assembly 274
 Disassembly 271
 Installation 280
 Removal 270
Shift Linkage
 Adjustment 230
 Installation 226
 Removal 207
Shift Rod Adjustment 19, 265
Shimming, Driveshaft 279
Shop Aids 27
Spark Plugs
 Indexing 144
 Inspection 108, 144
 Maintenance Schedule 72
 Recommendation 19, 80, 144
Special Tools 21
Specifications 18
Starter
 Assembly 147
 Circuit Description 112
 Cleaning and Inspection 146
 Current Draw Test 137
 Disassembly 145
 Installation 148
 Removal 145
 Solenoid Test 136
Start-In-Gear Protection 62, 135
Stator
 Resistance Test 129
 Voltage Output Test 129
Steering System
 Lubrication 75
 Requirements 51
 Steering Arm and Shaft 249, 253
 Steering Torque 68
INDEX

Stern Bracket
Assembly 252
Disassembly 249
Lubrication 76
Removal 249
Stop Circuit 136
Storage 81
Submerged Engines 83
Switches
Key Switch 134
Swivel Bracket
Installation 253
SystemCheck
CHECK ENGINE Warning Signal 87, 89, 90
Circuits 132
Dash Connections 126
Description 101
Gauges 33, 101
Lights 102
LOW OIL Warning Signal 180, 188
NO OIL Warning Signal 89, 179, 180, 188
Operation Check 62
Requirement 33
S.A.F.E. 92
Self Test 102
Service Mode 102
TEMP Warning Signal 87, 88
Tests 97, 132, 133, 134
Warning Horn 102
Winterization Procedure 81

Tools
Back Billing Plate, P/N 325867 268
Bearing Installation Tool, P/N 326562 278
Bearing Installation Tool, P/N 339750 278
Bootstrap Tool, P/N 586551 101
Collar, P/N 341440 279
Connector Service Tool, P/N 342667 149
Crankshaft Bearing/Sleeve Installer, P/N 338647 216
Crimping Pliers, P/N 322696 149
Cylinder Bore Gauge, P/N 771310 214
Diagnostic Interface Cable, P/N 437955 94
Driveshaft Holding Socket, P/N 311875 267, 282
Driveshaft Puller, P/N 390706 268
Driveshaft Seal Protector, P/N 318674 279, 280, 282
Driveshaft Shimming Tool, P/N 393185 279
Electrical Test Probe Kit, P/N 342677 185, 188
Flywheel Holder, P/N 771311 141
Fuel Pressure Gauge, P/N 5000902 165
Fuel Pressure Gauge, P/N 5005697 166
Gauging Head, P/N 352879 270
Large Puller Jaws, P/N 432129 211, 273

Technical Data
18

Temperature
Operating 63, 197
Operation below freezing 59

Temperature Sensor
Description 87
Resistance Test 128

Thermometer
Assembly 199
Description 195

Throttle Linkage
Installation 227
Lubrication 76
Removal 207

Throttle Position Sensor
Calibration 143
Description 89
Tests 127

Tilt Limit Switch
Cam Installation 243

Tilt Support 286

Tilt Tube
Installation 243
Lubrication 76
Removal 242

Timing Pointer Adjustment 142
Timing Verification 98, 143

Thermometer
Pulse Setting 63
Test 139

Technical Data
18

Temperature
Operating 63, 197
Operation below freezing 59

Temperature Sensor
Description 87
Resistance Test 128

Thermometer
Assembly 199
Description 195
Lifting Eye, P/N 321537 S–17
Lifting Fixture, P/N 396748 206
Lower Driveshaft Puller, P/N 342681 268
Pinion Bearing Remover/Installer, P/N 391257 272, 276
Pinion Nut Holder, P/N 334455 267, 282
Pinion Nut Starting Tool, P/N 342216 282
Piston Stop Tool, P/N 342679 142
Primary Lock Tool, P/N 777077 150
Puller Bridge, P/N 432127 273
Ring Compressor, P/N 336313 220
Ring Compressor, P/N 336314 220
Rod Cap Alignment Fixture, P/N 396749 222
Seal Installation Tool, P/N 326551 278
Seal Installation Tool, P/N 330268 277
Seal Installation Tool, P/N 336311 278
Secondary Lock Installer, P/N 777079 150
Secondary Lock Tool, P/N 777078 150
Slide Hammer Adaptor Kit, P/N 390898 171
Slide Hammer, P/N 391008 171, 216, 268
Slide Hammer, P/N 432128 211, 243
Small Puller Jaws, P/N 432131 273
Stator Test Adaptor, P/N 5005799 129
Syringe, P/N 346936 187
Temperature Gun, P/N 772018 197, 198
Terminal Release Tool, P/N 351413 151
Thermal Joint Compound, P/N 322170 197
Tilt Tube Service Kit, P/N 434523 242
Timing Light 110
Torquing Socket, P/N 331638 209, 223
Universal Puller Set, P/N 378103 141, 267, S–17
Universal Shift Rod Height Gauge, P/N 389997 265
Wrench Retainer, P/N 341438 267, 282
Wrist Pin Bearing Tool, P/N 336660 218
Wrist Pin Cone, P/N 318600, 219
Wrist Pin Pressing Tool, P/N 326356 210
Wrist Pin Retaining Ring Driver, P/N 318599 219

Torque Chart
Standard Torques 20

TPS Calibration 99

Trailering Bracket 76, 286

Trim and Tilt
Assembly 295
Circuits 138
Disassembly 294
Electrical Circuit Tests 138
Fluid 78
Inspection 287
Removal 291
Reservoir Fluid 78, 287
Troubleshooting 288

Trim Gauge Test 290
Trim Sender
Adjustment 67
Test 291

Trim Tab Adjustment 68

Troubleshooting
Air Temperature Sensor 128
Charging System Tests 130
Cylinder Drop Test 110
Diagnostic Procedures 108
Engine Temperature Sensor 128
Fuel Injectors 120
Fuel System 119, 164, 165
Ignition 114, 115, 117
Inductive Amp Meter Test 111
Specialized Test Procedures 110
Timing Light Test 110
Trim and Tilt 288
Voltage Testing 112

U

Upper Mount Servicing 228

V

Vapor Separator
Description 158
Installation 170
Removal 170
W

Water Intake Screens 72, 74, 75, 270, 280
Water Pressure Gauge 56
Water Pump
 Assembly 263
 Description 193
 Disassembly 262
 Inspection 262
Water Temperature Sensor 88
Water Tube 245, 246
Winterizing 81
Wrist Pin
 Bearing 210
 Installation 218
 Removal 210
TROUBLE CHECK CHART

OUTBOARD WILL NOT START

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>POSSIBLE CAUSE</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outboard does not turn over</td>
<td>Battery switch not ON</td>
<td>Check battery switch operation</td>
</tr>
<tr>
<td></td>
<td>Discharged battery</td>
<td>Check battery, recharge or replace</td>
</tr>
<tr>
<td></td>
<td>Battery cables and connections</td>
<td>Clean and tighten connections. Check for voltage drop in starter circuit.</td>
</tr>
<tr>
<td></td>
<td>Faulty connection or ground, damaged electrical harness</td>
<td>Check all grounds, connections and wiring</td>
</tr>
<tr>
<td></td>
<td>Fuse (10 A)</td>
<td>Check wiring, then replace faulty fuse</td>
</tr>
<tr>
<td></td>
<td>Wiring harness</td>
<td>Check for 12 V at terminal “B” of key switch</td>
</tr>
<tr>
<td></td>
<td>Key switch</td>
<td>Check key switch operation</td>
</tr>
<tr>
<td></td>
<td>Starter solenoid</td>
<td>Check wiring and test solenoid</td>
</tr>
<tr>
<td></td>
<td>Starter or bendix/drive gears</td>
<td>Check starter, inspect bendix/drive gears</td>
</tr>
<tr>
<td></td>
<td>Seized powerhead or gearcase</td>
<td>Check and repair as needed</td>
</tr>
<tr>
<td>Outboard turns slowly</td>
<td>Discharged battery</td>
<td>Check battery, recharge or replace</td>
</tr>
<tr>
<td></td>
<td>Battery cables and connections</td>
<td>Clean and tighten connections. Check voltage drop in starter circuit.</td>
</tr>
<tr>
<td></td>
<td>Powerhead hydro-locked</td>
<td>Check cylinders for water</td>
</tr>
<tr>
<td></td>
<td>Partially seized powerhead or gearcase</td>
<td>Check and repair as needed</td>
</tr>
<tr>
<td></td>
<td>Starter or bendix/drive gears</td>
<td>Check starter, inspect bendix/drive gears</td>
</tr>
</tbody>
</table>
TROUBLE CHECK CHART
OUTBOARD WILL NOT START

OUTBOARD WILL NOT START

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>POSSIBLE CAUSE</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outboard turns over</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop circuit grounded</td>
<td>Check wiring and emergency stop switch. Check the safety lanyard is installed and stop circuit is not grounded.</td>
<td></td>
</tr>
<tr>
<td>In gear–Tiller models</td>
<td>Make sure outboard is in neutral</td>
<td></td>
</tr>
<tr>
<td>No Fuel</td>
<td>Check for fuel in fuel tank</td>
<td></td>
</tr>
<tr>
<td>Water in fuel</td>
<td>Check fuel filter, sample fuel from fuel return manifold.</td>
<td></td>
</tr>
<tr>
<td>Contaminated or poor fuel quality</td>
<td>Check or replace fuel supply</td>
<td></td>
</tr>
<tr>
<td>Fuel supply restricted</td>
<td>Check primer, anti-siphon valve, and fuel pick-up. Use primer to fill vapor separator with fuel.</td>
<td></td>
</tr>
<tr>
<td>Air in fuel system</td>
<td>Check for air in fuel supply manifold, refer to FUEL SYSTEM on p. 155 (vapor separator venting and fuel supply)</td>
<td></td>
</tr>
<tr>
<td>Low or no fuel pressure to injectors</td>
<td>Check fuel manifold pressure, refer to FUEL SYSTEM on p. 155</td>
<td></td>
</tr>
<tr>
<td>Incorrect, fouled, or worn spark plugs</td>
<td>Replace spark plugs</td>
<td></td>
</tr>
<tr>
<td>Fuel injectors not working</td>
<td>Check voltage at injectors</td>
<td></td>
</tr>
<tr>
<td>Excessive fuel or oil, engine flooded</td>
<td>Check for leaking injectors, leaking fuel or oil lift pump, or leaking vapor separator vent, refer to SYSTEM ANALYSIS on p. 103</td>
<td></td>
</tr>
<tr>
<td>Low or no 55 V alternator output</td>
<td>Check voltage on 55 V circuit, refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
<td></td>
</tr>
<tr>
<td>Capacitor or 55 V circuit wiring</td>
<td>Check capacitor and 55 V circuits, refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
<td></td>
</tr>
<tr>
<td>Ignition</td>
<td>Check ignition, refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
<td></td>
</tr>
<tr>
<td>CPS input to EMM, no sync</td>
<td>Check RPM reading while cranking</td>
<td></td>
</tr>
<tr>
<td>No ignition system primary voltage output from EMM to ignition coils</td>
<td>Check cranking RPM (300 minimum), refer to SYSTEM ANALYSIS on p. 103</td>
<td></td>
</tr>
<tr>
<td>Low or no compression</td>
<td>Check compression</td>
<td></td>
</tr>
<tr>
<td>Water in engine</td>
<td>Check condition of spark plugs and cylinders</td>
<td></td>
</tr>
<tr>
<td>Internal powerhead damage</td>
<td>Check and repair as needed</td>
<td></td>
</tr>
<tr>
<td>Leaking cylinder/crankcase, intake manifold, or reed valves</td>
<td>Check and repair as needed</td>
<td></td>
</tr>
<tr>
<td>EMM program, timing, or operation</td>
<td>Check EMM program and timing; check injector information (by location and serial number)</td>
<td></td>
</tr>
<tr>
<td>Neutral switch, tiller models</td>
<td>Check neutral switch operation</td>
<td></td>
</tr>
</tbody>
</table>
OUTBOARD HARD TO START

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>POSSIBLE CAUSE</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak battery</td>
<td>Check battery, recharge or replace</td>
<td></td>
</tr>
<tr>
<td>Battery cables and connections</td>
<td>Clean and tighten connections, check voltage drop on high amperage circuit</td>
<td></td>
</tr>
<tr>
<td>Starter or bendix/drive gears</td>
<td>Check starter, inspect bendix/drive gears</td>
<td></td>
</tr>
<tr>
<td>Water in fuel system</td>
<td>Check water separator/fuel filter, sample fuel from fuel return manifold test port</td>
<td></td>
</tr>
<tr>
<td>Contaminated or poor fuel quality</td>
<td>Check or replace fuel supply</td>
<td></td>
</tr>
<tr>
<td>Air in fuel system</td>
<td>Check for air in fuel supply manifold, refer to FUEL SYSTEM on p. 155 (vapor separator venting and fuel supply)</td>
<td></td>
</tr>
<tr>
<td>Incorrect, fouled, or worn spark plugs</td>
<td>Replace spark plugs</td>
<td></td>
</tr>
<tr>
<td>Low fuel pressure</td>
<td>Check pressure, refer to FUEL SYSTEM on p. 155</td>
<td></td>
</tr>
<tr>
<td>Fuel supply restricted</td>
<td>Check primer bulb, anti-siphon valve, and fuel pick-up, check for fuel system air leaks</td>
<td></td>
</tr>
<tr>
<td>Low or no alternator output (55 V)</td>
<td>Check voltage on 55 V circuit, refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
<td></td>
</tr>
<tr>
<td>Capacitor or 55 V circuit wiring</td>
<td>Check capacitor and 55 V circuit (white/red), refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
<td></td>
</tr>
<tr>
<td>Restricted or leaking fuel injector(s)</td>
<td>Check injectors, refer to FUEL SYSTEM on p. 155</td>
<td></td>
</tr>
<tr>
<td>Weak or erratic ignition operation</td>
<td>Check ignition, refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
<td></td>
</tr>
<tr>
<td>Crankshaft Position Sensor (CPS)</td>
<td>Check CPS air gap and EMM LED indicators</td>
<td></td>
</tr>
<tr>
<td>Excessive fuel or oil, engine flooding</td>
<td>Check for leaking injectors, leaking fuel or oil lift pump, or leaking vapor separator vent. Refer to SYSTEM ANALYSIS on p. 103.</td>
<td></td>
</tr>
<tr>
<td>EMM program, timing, or operation</td>
<td>Check EMM program and timing; check injector coefficients; and monitor injector circuits and ignition primary outputs</td>
<td></td>
</tr>
<tr>
<td>Internal powerhead damage</td>
<td>Check and repair as needed</td>
<td></td>
</tr>
<tr>
<td>Low compression</td>
<td>Check compression</td>
<td></td>
</tr>
<tr>
<td>Leaking cylinder/crankcase, intake manifold, or reed valves</td>
<td>Check and repair as needed</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting Charts

Outboard Will Not Shut Off

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible Cause</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outboard starts and runs, normal performance while running</td>
<td>Key switch or wire harness ground</td>
<td>Check key switch and ground to key switch, refer to System Analysis on p. 103 and Electrical and Ignition on p. 123</td>
</tr>
<tr>
<td>Stop circuit wiring</td>
<td></td>
<td>Check EMM LED indicators. Check wire harness (black/yellow) and key/stop switch(s)</td>
</tr>
<tr>
<td>EMM failure</td>
<td></td>
<td>Check EMM LED indicators and eliminate stop circuit as possible cause. Stop wire (black/yellow) has 4.0 VDC from EMM with key on or outboard running</td>
</tr>
</tbody>
</table>

Outboard Starts and Stalls

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible Cause</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outboard may not run for more than a few seconds</td>
<td>Faulty wiring, connections, or grounds</td>
<td>Check all grounds, connections, and wiring</td>
</tr>
<tr>
<td></td>
<td>Incorrect, fouled, or worn spark plugs</td>
<td>Replace spark plugs</td>
</tr>
<tr>
<td></td>
<td>Low or no alternator output (55 V)</td>
<td>Check voltage on 55 V circuits, refer to System Analysis on p. 103 and Electrical and Ignition on p. 123</td>
</tr>
<tr>
<td></td>
<td>Capacitor or 55 V circuit wiring</td>
<td>Check capacitor and 55 V circuit, refer to System Analysis on p. 103 and Electrical and Ignition on p. 123</td>
</tr>
<tr>
<td></td>
<td>Contaminated or poor fuel quality</td>
<td>Check or replace fuel supply</td>
</tr>
<tr>
<td></td>
<td>Low fuel pressure</td>
<td>Check pressure, refer to Fuel System on p. 155</td>
</tr>
<tr>
<td></td>
<td>Air in fuel system</td>
<td>Check for air in fuel supply manifold, refer to Fuel System on p. 155 (vapor separator venting and fuel supply)</td>
</tr>
<tr>
<td></td>
<td>Fuel supply restricted</td>
<td>Check primer bulb, anti-siphon valve, and fuel pick-up, check for fuel system air leaks</td>
</tr>
<tr>
<td></td>
<td>Injector electrical circuit or control function</td>
<td>Check voltage at injectors, refer to System Analysis on p. 103</td>
</tr>
<tr>
<td></td>
<td>Restricted or leaking fuel injector(s)</td>
<td>Check injectors, refer to Fuel System on p. 155</td>
</tr>
<tr>
<td></td>
<td>EMM program, timing, or operation</td>
<td>Check EMM program and timing; check injector coefficients; and monitor injector control wires and ignition primary outputs</td>
</tr>
<tr>
<td></td>
<td>Weak or erratic ignition output</td>
<td>Check ignition, refer to System Analysis on p. 103 and Electrical and Ignition on p. 123</td>
</tr>
<tr>
<td></td>
<td>Internal powerhead damage</td>
<td>Check and repair as needed</td>
</tr>
</tbody>
</table>
OUTBOARD STARTS, LOW MAXIMUM RPM

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>POSSIBLE CAUSE</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemCheck light</td>
<td>Outboard is in S.A.F.E.</td>
<td>Access EMM service codes and check System-Check warning</td>
</tr>
<tr>
<td>Setup or rigging change</td>
<td>Incorrect propeller</td>
<td>Refer to specifications, check recommended WOT RPM; water test and install correct pitch propeller</td>
</tr>
<tr>
<td></td>
<td>Incorrect outboard mounting height</td>
<td>Refer to installation guidelines</td>
</tr>
<tr>
<td>Throttle plate opening</td>
<td>Check throttle plate and WOT opening</td>
<td></td>
</tr>
<tr>
<td>Incorrect, fouled, or worn spark plugs</td>
<td>Replace spark plugs</td>
<td></td>
</tr>
<tr>
<td>Contaminated or poor quality fuel</td>
<td>Check or replace fuel supply</td>
<td></td>
</tr>
<tr>
<td>Fuel supply restricted</td>
<td>Check primer bulb, anti-siphon valve, and fuel pick-up, check for fuel system air leaks</td>
<td></td>
</tr>
<tr>
<td>Low alternator output (55 V)</td>
<td>Check voltage on 55 V circuits, refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
<td></td>
</tr>
<tr>
<td>Weak or erratic ignition operation</td>
<td>Check ignition, refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
<td></td>
</tr>
<tr>
<td>Fuel injector electrical circuit or control function</td>
<td>Check voltage at injectors, refer to SYSTEM ANALYSIS on p. 103</td>
<td></td>
</tr>
<tr>
<td>Restricted or leaking fuel injectors</td>
<td>Check injectors, refer to FUEL SYSTEM on p. 155</td>
<td></td>
</tr>
<tr>
<td>Low fuel pressure</td>
<td>Check circulation pump operation, refer to FUEL SYSTEM on p. 155</td>
<td></td>
</tr>
<tr>
<td>EMM programming, timing, or operation</td>
<td>Check EMM program and timing; check injector coefficients; and monitor injector circuits and ignition primary outputs</td>
<td></td>
</tr>
<tr>
<td>Restricted engine exhaust</td>
<td>Check and repair as needed</td>
<td></td>
</tr>
</tbody>
</table>

EXCESSIVE SMOKING

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>POSSIBLE CAUSE</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>May coincide with increased oil consumption (normal if occurs after winterization)</td>
<td>Contaminated or poor fuel</td>
<td>Check or replace fuel supply</td>
</tr>
<tr>
<td></td>
<td>Excessive fuel or oil consumption</td>
<td>Check fuel system for fuel supply air leaks or leaking fuel injectors</td>
</tr>
<tr>
<td></td>
<td>Outboard in break-in mode</td>
<td>Use diagnostic program to confirm</td>
</tr>
<tr>
<td></td>
<td>Outboard mounted too low</td>
<td>Check installation height of outboard</td>
</tr>
<tr>
<td></td>
<td>Vapor separator vent</td>
<td>Check vapor separator assembly for proper venting/float valve operation</td>
</tr>
<tr>
<td></td>
<td>Faulty/leaking fuel injector(s)</td>
<td>Check injectors, refer to FUEL SYSTEM on p. 155</td>
</tr>
<tr>
<td></td>
<td>Damaged fuel lift pump</td>
<td>Check for internal leaks</td>
</tr>
</tbody>
</table>
TROUBLE CHECK CHART
OUTBOARD SURGES, RUNS ROUGH

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>POSSIBLE CAUSE</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 RPM and above</td>
<td>S.A.F.E.</td>
<td>Access EMM fault codes</td>
</tr>
<tr>
<td></td>
<td>Incorrect, fouled, or worn spark plugs</td>
<td>Replace spark plugs</td>
</tr>
<tr>
<td></td>
<td>Water in fuel system</td>
<td>Check water separator/fuel filter, sample fuel from fuel return manifold test port</td>
</tr>
<tr>
<td></td>
<td>Contaminated or poor fuel quality</td>
<td>Check and replace fuel supply</td>
</tr>
<tr>
<td></td>
<td>Low or erratic fuel pressure</td>
<td>Check pressure, refer to FUEL SYSTEM on p. 155</td>
</tr>
<tr>
<td></td>
<td>Air in fuel system</td>
<td>Check for air in fuel supply manifold, refer to FUEL SYSTEM on p. 155 (vapor separator venting and fuel supply)</td>
</tr>
<tr>
<td></td>
<td>Fuel supply restricted</td>
<td>Check primer bulb, anti-siphon valve, and fuel pick-up, check for fuel system air leaks</td>
</tr>
<tr>
<td></td>
<td>Restricted or leaking fuel injector(s)</td>
<td>Check injectors, refer to FUEL SYSTEM on p. 155</td>
</tr>
<tr>
<td></td>
<td>Faulty wiring, connections, grounds, or CPS air gap</td>
<td>Check all grounds, connections, and wiring. Check CPS air gap.</td>
</tr>
<tr>
<td></td>
<td>Low alternator output (55 V)</td>
<td>Check voltage on 55 V circuit, refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
</tr>
<tr>
<td></td>
<td>EMM program, timing, or operation</td>
<td>Check EMM program and timing; check injector coefficients; and monitor injector circuits and ignition primary outputs</td>
</tr>
<tr>
<td></td>
<td>Weak or erratic ignition operation</td>
<td>Check ignition, refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
</tr>
<tr>
<td></td>
<td>Capacitor or 55 V circuit wiring</td>
<td>Check capacitor and 55 V circuit (white/red), refer to SYSTEM ANALYSIS on p. 103 and ELECTRICAL AND IGNITION on p. 123</td>
</tr>
<tr>
<td></td>
<td>Restricted engine exhaust</td>
<td>Check and repair as needed</td>
</tr>
<tr>
<td>Audible noise</td>
<td>Internal powerhead damage</td>
<td>Check and repair as needed</td>
</tr>
<tr>
<td></td>
<td>Damaged gearcase</td>
<td>Inspect gearcase and lubricate</td>
</tr>
</tbody>
</table>

May be erratic or inconsistent
Hose Routing and Water Flow Diagram
75 – 90 HP EVINRUDE E-TEC

1. Intake water screens
2. Water pump
3. Water tube
4. Adaptor housing
5. Cylinder block
6. Pressure valve
7. Thermostat
8. Water supply to EMM
9. Water supply, EMM to vapor separator
10. Overboard indicator, outgoing water from vapor separator

Outgoing water (warm/hot)
Incoming water (cool)
Lanyard Switch / Emergency Stop Circuits

Single Outboard

Dual Outboards

000705
MWS Key Switch and Neutral Safety Switch

OFF

ON

START

4 5 6

3 2 1
MWS DASHBOARD

SYSTEM CHECK™

TACHOMETER

SPEEDOMETER

TO OUTBOARD

WARNING HORN

LIGHT SWITCH

VOLTMETER

TRIM/TILT

WATER PRES.

FUEL TANK SENDER

MWS DASHBOARD

TO OUTBOARD

DRC6278R
Evinrude E-TEC
EMM LED Diagnostic Indicators

Key ON: LED’s illuminate to indicate circuit **function**

- **1**: Start assist circuit (SAC), V-EMM models only
- **2**: Sensor circuits – TPS, CPS and 5V circuits
- **4**: Stop circuit not grounded

Starting Mode: LED’s illuminate to indicate circuit **function**

- **1**: Indicates 30V (or higher) on 55V circuit
- **2**: Indicates CPS function and EMM SYNC
- **3**: Sensor circuits functional
- **4**: Stop circuit not grounded

Running Mode: LED’s illuminate to indicate circuit **fault**

Exception: ALL LED’s ON indicates outboard running in **Winterization Mode**.
<table>
<thead>
<tr>
<th>CODE</th>
<th>EMM CIRCUIT/SENSOR</th>
<th>EVINRUDE EMM SERVICE CODE</th>
<th>TIME TO ACTIVATE</th>
<th>SENSOR: CIRCUIT VOLTAGE / RESISTANCE (Ω) INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Throttle Position</td>
<td>(TPS) out of idle range</td>
<td>CHECK ENGINE</td>
<td>0.8 seconds/ 1.6 seconds for 90°V</td>
</tr>
<tr>
<td></td>
<td>Sensor (TPS)</td>
<td></td>
<td>SENSORS FAULT</td>
<td>Voltage: 5 V* circuit and Ground (NEG)</td>
</tr>
<tr>
<td></td>
<td>circuit fault</td>
<td></td>
<td>LED 3 (IDLE ONLY)</td>
<td>5 V* circuit and Ground (NEG)</td>
</tr>
<tr>
<td>12</td>
<td>Throttle Position</td>
<td>Sensor (TPS) circuit</td>
<td>CHECK ENGINE</td>
<td>Voltage: 4500 to 8000 Ω (between pins A and C)</td>
</tr>
<tr>
<td></td>
<td>fault</td>
<td></td>
<td>SENSORS FAULT</td>
<td>Voltage: 4500 to 8000 Ω (between pins A and C)</td>
</tr>
<tr>
<td>13</td>
<td>TS5 below range</td>
<td></td>
<td>CHECK ENGINE</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>14</td>
<td>TS above range</td>
<td></td>
<td>CHECK ENGINE</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>15</td>
<td>RPM (EMM program)</td>
<td></td>
<td>RPM (CHECKSUM verification)</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RPM (CHECKSUM verification)</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>16</td>
<td>Crankshaft Position</td>
<td>Sensor (CPS)</td>
<td>CHECK ENGINE</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SENSORS FAULT</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LED 3 (IDLE ONLY)</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LED 3 (IDLE ONLY)</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>17</td>
<td>65 V circuit</td>
<td>BELLO range</td>
<td>CHECK ENGINE</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHARGING FAULT</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LED 1 (IDLE ONLY)</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LED 1 (IDLE ONLY)</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>18</td>
<td>65 V circuit</td>
<td>ABOVE range</td>
<td>CHECK ENGINE</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHARGING FAULT</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LED 1 (IDLE ONLY)</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LED 1 (IDLE ONLY)</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>19</td>
<td>Start-in-gear</td>
<td></td>
<td>ALL LED'S ON</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>20</td>
<td>Winterization</td>
<td>activated</td>
<td>ALL LED'S ON</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>21</td>
<td>Engine temperature</td>
<td>switch closed</td>
<td>WATER TEMPPROT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>22</td>
<td>Engine temperature</td>
<td>sensor</td>
<td>WATER TEMPPROT</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>23</td>
<td>EMM temperature</td>
<td>sensor</td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>24</td>
<td>EMM temperature</td>
<td>BELOW range</td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>25</td>
<td>EMM temperature</td>
<td>ABOVE range</td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>26</td>
<td>12 V circuit</td>
<td>BELOW range</td>
<td>CHARGING FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LED 1 (IDLE ONLY)</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>27</td>
<td>12 V circuit</td>
<td>ABOVE range</td>
<td>CHARGING FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LED 1 (IDLE ONLY)</td>
<td>Voltage above 4.5 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>28</td>
<td>Shift switch</td>
<td>malfunction</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>29</td>
<td>EMM temperature</td>
<td>OVER range</td>
<td>WATER TEMPPROT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>30</td>
<td>EMM temperature</td>
<td>OVER range</td>
<td>WATER TEMPPROT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>31</td>
<td>Engine temperature</td>
<td>OVER range</td>
<td>WATER TEMPPROT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>32</td>
<td>Oil pressure</td>
<td>switch, CONSTANT</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO OIL - FLASHING</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>33</td>
<td>Shift switch</td>
<td>malfunction</td>
<td>WATER TEMPPROT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>34</td>
<td>Oil injection</td>
<td>pump circuit OPEN (E-TEC</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td>pressure</td>
<td>(E-TEC / DI)</td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>35</td>
<td>No oil pressure</td>
<td>(1997-2000 DI)</td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>36</td>
<td>Water in fuel</td>
<td></td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>37</td>
<td>Oil pressure</td>
<td>feedback NOT detected</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>38</td>
<td>Oil pressure</td>
<td>prime failure</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>39</td>
<td>Engine temperature</td>
<td>Sensor (port/inline)</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>40</td>
<td>Engine temperature</td>
<td>Above range (port/</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inline)</td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>41</td>
<td>Engine Temperature</td>
<td>Sensor (port/inline)</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>42</td>
<td>Engine temperature</td>
<td>Above range (port/</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inline)</td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>43</td>
<td>Engine Temperature</td>
<td>Above range (port/</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inline)</td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>44</td>
<td>Barometric (Atmospheric) Pressure Sensor circuit fault (BP Sensor)</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>45</td>
<td>BP Sensor</td>
<td>BELOW range</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>46</td>
<td>BP Sensor</td>
<td>ABOVE range</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO OIL/OVERHEAT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>47</td>
<td>Air Temperature</td>
<td>(AT) circuit</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>48</td>
<td>AT circuit</td>
<td>BELOW range</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>49</td>
<td>AT circuit</td>
<td>ABOVE range</td>
<td>SENSORS FAULT</td>
<td>Voltage below 0.2 V. Confirm linkage and wiring.</td>
</tr>
<tr>
<td>CODE</td>
<td>EMM CIRCUIT/SENSOR</td>
<td>Engine Operating Temperature</td>
<td>SENSOR FAULT (LED 3)</td>
<td>8 seconds</td>
</tr>
<tr>
<td>------</td>
<td>--------------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>51</td>
<td>Fuel injector circuit #1 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Fuel injector circuit #2 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Fuel injector circuit #3 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Fuel injector circuit #4 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Fuel injector circuit #5 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Fuel injector circuit #6 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>High RPM with low TPS setting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Operating temperature not reached (port/line)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Operating temperature not reached (stbd)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Fuel injector circuit #1 SHORTED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Fuel injector circuit #2 SHORTED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Fuel injector circuit #3 SHORTED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Fuel injector circuit #4 SHORTED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Fuel injector circuit #5 SHORTED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Fuel injector circuit #6 SHORTED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Engine temperature sensor (standby)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Engine Temperature BELOW range (stbd)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Engine Temperature ABOVE range (stbd)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Oil pressure circuit sensor fault detected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Oil pressure BELOW expected range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Oil pressure ABOVE expected range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Water pressure sensor circuit fault detected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Water pressure BELOW expected range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Water pressure ABOVE expected range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>L.A.C. overcurrent fault</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Starter solenoid circuit detected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Starter solenoid circuit OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Ignition primary circuit #1 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Ignition primary circuit #2 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Ignition primary circuit #3 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Ignition primary circuit #4 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Ignition primary circuit #5 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Ignition primary circuit #6 OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Exhaust pressure circuit fault</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Exhaust pressure BELOW expected range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Exhaust pressure ABOVE expected range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Exhaust valve solenoid OPEN (115HP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Fuel pump circuit OPEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Fuel pump circuit SHORTED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Water injection solenoid OPEN (240HP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Fuel pump circuit SHORTED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Intermittent switch B1-detected</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Always note service codes before clearing codes. Clear stored codes using diagnostic software. Some hard codes, such as code 57, are cleared by turning EMM "OFF" and then "ON" again.